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Die Mathematiker sind eine Art Franzosen: redet man zu ihnen, so übersetzen
sie es in ihre Sprache, und dann ist es alsobald ganz etwas anderes.

- Johann Wolfgang von Goethe (1749 - 1832)
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Chapter 1

Introduction

1.1 Revenue Management

Revenue Management (RM) is the art and science to maximize revenue or
profit by selling products at the right time and at the best price to the right
customer. Traditionally, RM is concerned with selling perishable products,
e.g., airline tickets, by controlling price, availability and potential overbooking.
The classic application areas, such as airlines, hotels and car rental companies,
share four common characteristics: perishable products, time varying demand,
relatively low variable costs and the possibility of market segmentation and
price differentiation. Nowadays, the ideas, techniques and approaches of RM
are also successfully applied to many other industries, which do not necessary
share all of the above characteristics. The early RM work dates back to
Littlewood (1972). He studied the airline problem on a single flight with two
price classes and proposed the idea of focusing on profit maximization. The
paper describes a basic passenger forecasting method and a revenue control,
which is nowadays referred to as Littlewood’s Rule. Low fare customers are
assumed to arrive before high fare customers. Since the airplane has a finite
capacity, the airline’s revenue maximization problem is to determine the right
passenger mix. In other words, the goal is to restrict the number of low fare
customers to be accepted. Littlewood proposed a simple rule, stating that the
airline should accept low fare customers as long as the lower fare exceeds the
expected revenue from selling another seat at the higher fare. Belobaba (1989)
extended this approach to multiple price classes with independent demand,
called Expected Marginal Seat Revenue (EMSR) method.

Mostly when people talk about revenue management and certainly in scientific
Operations Research papers, it is more about the technical side and problem
specific, but not on the actual idea and attitude behind it. This book, as it
claims a scientific standard and contribution, will be no exception and also
focuses on technical aspects. Namely, we are proposing a practical approach
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to incorporate the customers’ choice behavior in the demand modeling and
further in the whole RM system. But behind revenue management stands an
idea contrary to cost cutting, downsizing, concentration on the core business,
etc. It is the idea of growth, of going into competition and fighting for every
customer in order to increase revenue and profit. The core idea is to increase
revenue from existing customers while simultaneously acquiring new ones. So
the focus is always on growth and going into competition rather than reducing
costs in order to boost the bottom line. A popular introduction to the ideas
and basic approaches in revenue management is found in Cross (1997). He
also illustrates the idea of ‘what looks like the same product is not always the
same product and therefore you can price it differently’ on an example with
airline tickets. Airlines charge different prices for technically the same seat
on an airplane. So one might conclude that different prices are charged for
the same product. But actually, it is not the same product if you buy the
ticket 3 month before departure or on the day before departure or even at the
same day. When reserving seats for customers requesting a ticket very close
to departure, the airline takes the risk of not selling the seat if no customer
arrives at a later time in the booking horizon. Therefore, the price of the ticket
and also the willingness to pay of customers is generally increasing towards the
departure of the airplane. This basic observation on the meaning of prices was
already made by Silberston (1970), who explains the diversification of prices in
the car market in essence by the variety of different products. A car product
is more then the car type itself, it differs by configuration, payment form, etc.
Since the 1980’s, RM topics have been extensively investigated by the airline
industry due to the deregulation of the US market in 1978. Over the last two
decades there was also a huge growth in literature focusing on RM problems
in other sectors such as hotels, car rental, cruise lines, advertising and many
more. A popular track record of RM is found in Cross (1997). It is about the
“battle” between American Airlines and People Express in 1985-1987. People
Express was founded in 1981 and revolutioned the airline business by offering
simple plain flight tickets with no extra services but at prices 50-70% less than
the major airlines. By 1983, People Express became a serious competitor to
the major airlines. In 1985, American Airlines introduced discount tickets,
called Super Savers, directly targeting routes also served by People Express.
American’s newly formed yield management department was the key to suc-
cess. It controlled the pricing and capacity availability in order to effectively
compete on prices with airlines such as People Express and simultaneously
preserving the full fare traffic when possible. Full and uncontrolled competi-
tion on price with the low-cost carrier would have killed American, since their



1.2. Microeconomic Reflection 3

fixed costs were considerably higher than the ones of People Express. This was
the birth of customer segmentation and having variable prices on the same air-
plane. Two years later, People Express was forced out of business. Geraghty
and Johnson (1997) report another success story, they describe the RM sys-
tem implemented in 1993 and 1994 at National Car Rental. In 1993, National
faced liquidation and their only hope was to generate substantial profit in the
short term or 7500 jobs would have been lost. A RM program was introduced,
focusing on pricing and capacity control at rental station level. The profit was
immediately increased and in 1995 General Motors Corporation, as the parent
company, sold National Car Rental for approximately 1.2 billion Dollar. Both
applications opened the door for RM to be nowadays applied in many diverse
companies, creating a whole industry of supporting software and consulting
firms specialized on RM solutions. Also the academic research and education
in the field increased with many courses on RM offered to Master or PhD
students. There are also two research journal entirely devoted to RM, namely
the Journal of Revenue and Pricing Management, first issue in 2002, and the
International Journal of Revenue Management, first issue in 2007. Currently,
RM is one of the fastest developing research areas in Operations Research.

We like to refer to two books for a broad overview of topics and a general
introduction to revenue management: First, an extensive overview of RM
aspects covering optimization, dynamic pricing, basic forecasting and choice
models, industry profiles and implementation issues of RM systems is found
in, what can be almost called the bible of RM, the book of Talluri and van
Ryzin (2004b). Second, the PhD thesis of Pak (2005), who concentrates on
an overview of RM techniques with a focus on airline, hotel and cargo. There
are many good review papers, but we only like to mention here two of them.
Starting with Chiang et al. (2007), who review 221 papers and five book
and provide with it a very comprehensive overview of revenue management
developments in research. Moreover, Bobb and Veral (2008) investigate the
different components of a RM system and focus on the gaps between practice
and research.

1.2 Microeconomic Reflection

Let us now access the idea of revenue management from a microeconomic
perspective. This section follows the popular and standard textbook on mi-
croeconomics by Pindyck and Rubinfeld (2001). Generally speaking, microe-
conomics deals with economic units, individual buyers or sellers, and tries to
explain the decisions made by these units as well as the trade-offs consumers
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and producers are facing. We initially concentrate on a perfect competitive
market, which consists of many buyers and sellers and no single unit having a
significant influence on the price and entering or exiting the market is fairly
easy. The best example for perfect competition is the market of agriculture
goods, as no single farmer on the supplier site nor a single buyer has a signif-
icant impact on the price. In such a market, supply and demand will come
into equilibrium. In other words, there exists a general market price which
determines the total quantity produced and ensures that the market is cleared,
i.e., all produced quantity is sold at the market price. The relationship be-
tween producers’ willingness to produce and the market price is illustrated
by the supply curve, as shown in Figure 1.1 (a). The curve is increasing, be-
cause the higher the market price becomes, the more attractive it becomes for
new producers to enter the market and producers already in the market are
motivated to increase production. The complementary relationship between

Quantity
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Quantity
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demand curve

Figure 1.1. Example of supply and demand curves.

buyers and the quantity demanded related to the market price is given by
the demand curve, shown in Figure 1.1 (b). In contrast, the demand curve
is decreasing, because only few consumers are willing and are able to buy at
very high prices, when the price lowers more consumers can afford to enter the
market and buy the product. Free markets have the tendency for the price
to change until the market clears, i.e., supply equals demand. This state is
called equilibrium. Figure 1.2 illustrates the equilibrium situation. Suppose
P1 would be the market price. So producers would be willing to produce QS

1

units, but only QD
1 quantities are demanded due to the relatively high price.

Hence, a surplus in produced products develops which will consequently lead



1.2. Microeconomic Reflection 5

Quantity

Pr
ic

e
Market mechanism

 

 

supply demand

surplus

shortage

P
1

P
2

Q* Q
1
SQ

1
D

P*

Figure 1.2. Market mechanism.

to price reductions. On the other hand, suppose P2 is the current market
price. In this situation, the quantity produced is much smaller than the quan-
tity requested in the market at this price. Therefore, there is a shortage in the
market, which results in a price rise. At a higher price, suppliers are willing
to produce more and simultaneously the quantity requested will reduce. An
equilibrium state will be a market price of P ∗, where the quantity demanded
and supplied equals at Q∗. Very interesting is of course the shape of the de-
mand and supply functions. How do consumers or suppliers react to changes
in the price? Are they price sensitive and react to relatively small changes
or not? This can be answered by computing the elasticity of the demand or
supply curve. The elasticity is defined as the % change of the variable of in-
terest resulting from a 1% increase in the other, i.e., “elastic” means that a
small change in price results in a large change in quantity. Figure 1.3 illus-
trates both extremes of the demand curve. Figure 1.3 (a) shows an infinitely
elastic curve, where consumers buy as much as possible at price P , but stop
if the price increases even a little. The opposite, a completely inelastic curve,
is shown in Figure 1.3 (b). Here, consumers buy a fixed quantity with the
price having zero influence. So far, we assumed that consumers will react to
a price of a certain product with a yes or no decision, independent of other
influences. This is a rather superficial assumption. What is in reality found is
that consumers trade off between different products and their prices. Here, we
distinguish between two groups: substitutes and complements. Two products
are substitutes when an increase of the price of the one results in an increase
of the quantity demanded of the other. An example of substitutes would be
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Figure 1.3. Extreme demand elasticity curves.

apples and oranges, as consumers can be assumed to substitute the one for
the other. Complements are products, where a price rise for the one leads to a
reduction in quantity demand for the other. An example would be electricity
and air conditioners. Price elasticities can now also be computed in terms of
price changes for different products; they are then called cross price elastic-
ities. Consumers are supposed to make decisions in order to maximize their
utility, which is a numerical measure of the satisfaction a consumer receives
from buying a bundle of products. Producers on the other hand, are assumed
to be profit maximizing. The profit maximizing point is shown in Figure 1.4.
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Figure 1.4. Profit maximization.
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The optimal output is obtained when marginal revenue, change in revenue
from one unit increase in output, equals marginal costs, similarly defined as
the change in costs from one unit increase in output. There may be situations
in which companies make reasonable decisions which are not directly focused
on immediate profit targets. But generally and in the long run companies
must focus on profitability to survive in a free market economy. This leads us
to the definition of surpluses highlighted in Figure 1.5. The consumer surplus

Quantity
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ice

 

 

supply demand

P*

Q*

producer surplus

consumer surplus

Figure 1.5. Consumer and producer surpluses.

is the difference between their highest acceptable price, i.e., maximum will-
ingness to pay, and the actual paid price. The producer surplus on the other
hand, is the difference between the market price and variable costs of produc-
tion, whereas profit is defined as the difference between revenue and total costs.

Until now we assumed a perfect competitive market, which implied three as-
sumptions on the producer side. First “price taking”: firms have no impact on
market price and take it as given. Second “product homogeneity”: firms pro-
duce identical products. Third “free entry and exit”: firms can easily enter or
exit an industry. The opposite to a perfect competitive market is a monopoly
market, a single seller and many buyers. Normally, the production output will
be lower and the resulting market price in a monopoly will be higher than in
a competitive market and this is the reason why there are laws against mo-
nopolists. Still, in a monopoly the seller needs to determine the price to ask
and the respective production output. Producing more units at a given price
means extra revenue, but a production increase also means a lowering of the
selling price of all products. In a competitive market, the production amount
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is chosen such that the marginal costs are equal to the price. The monopolist
will choose a price higher than his marginal costs to increase his surplus, but
it depends also inversely on the demand elasticity. Which means if the mar-
ket demand is very elastic, the monopolist behaves as in competition. Most
markets fall between both extremes. Usually, there are players in the market
with market power, i.e., they have the ability to affect the market price. Or
products are not complete substitutes, which allows firms to ask prices higher
than the competitor without losing all its sales. So single firms often face a
demand curve different from the market demand curve and contrary to a firm
in a perfect competitive market, thus a price increase will not result in a loss of
all customers nor will a price decrease result in the capturing of the complete
market. Such companies are considered to have monopoly power. As Pindyck
and Rubinfeld (2001) phrase it in the introduction of Chapter 11, pricing with
market power, managers of firms with market power have a harder job than
managers of firms in a perfect competitive market. In a perfect competitive
market, prices are given and managers only have to focus on the cost side.
But firms with market power must also think about competitor influences and
the company’s demand curve. In many cases, such companies can do much
better by using more advanced pricing strategies than simply asking a single
price. The idea is to turn consumer surplus into producer surplus by charging
different prices to different customers. This requires very detailed information
on demand and the customers’ buying behavior. This process of charging dif-
ferent prices for technically the same product is called price discrimination.
The essential problem is to identify different customers and to make them pay
the different prices. The theory distinguishes three types of price discrimina-
tion. First degree price discrimination refers to the practice of charging each
individual customers his or her maximum willing price to pay. This trick is
almost impossible, since it is not in the consumer’s interest to share his or
her upper willingness to pay and it is therefore unknown to the seller. Second
degree price discrimination corresponds to the practice of asking different unit
prices depending on how much a customer demands, e.g., lower unit prices if
one consumes more units in total. Third degree price discrimination tries to
divide customers into different segments or groups and to ask different prices
per group.

The third degree price discrimination refers to core revenue management. The
problem is to identify or create groups. An example for identifying groups is
the classical Saturday night stay in the airline business. A customer willing
to stay on Saturday night away from his origin is very likely to be not on a
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business trip and therefore considered to be on a leisure trip. The creation of
groups is possible by barriers such as checking IDs for age restrictions or Uni-
versity cards for student discounts. Some segments will be charged with a price
lower then the optimal price in a single price setting, e.g., P ∗ in Figure 1.5.
This means that price discrimination allows consumers to enter the market
and buy products, who would have been excluded otherwise because of their
relatively low upper willingness to pay. An example is the airline industry with
discount fares for early bookers or opera halls and concert houses with student
discounts. So revenue management practice can increase overall welfare such
that producers and consumers are better off than in a single price environment.

The key challenge in revenue management is to get a correct understanding
of the consumer demand in order to answer the following four questions:

• How big are the demand groups?

• What is the price elasticity of the demand groups?

• What are the substitution behaviors?

• What are the competitor influences?

With this input, the company is able to derive optimal prices and sales quan-
tities per customer group in order to maximize the overall revenue/profit.

Also note that RM normally focuses on the short term, so output capacities are
predefined and fixed. The question is which prices to ask or which products or
price classes to offer to potential customers in order to maximize the revenue
or profit.

1.3 Demand Models in Revenue Management

The focus in RM lies mostly on the optimization model, which is often based on
numerous assumptions. The demand modeling and forecasting aspect, which
provides the essential input for the optimization model, is considered as given
and often neglected. Many RM setups work with the “independent demand
model”, i.e., assuming independent demand for different products or price
classes. A detailed statistical analysis on different airline reservation datasets
is found in Belobaba (1985). He focuses on identifying distributional patterns
and finds a relationship between reservation distributions for flights and fare
classes on certain weekdays and historical demand levels for those days. Lee
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(1990) investigates in his PhD thesis probabilistic demand models in order
to forecast airline reservations. The independent demand model is very con-
venient, because it assumes product demand to be equivalent with product
sales and hence straightforward to forecast by simply applying some time se-
ries models to historic sales data. It is essential to account for non-observed
demand, which did not turn into transactions because it was either turned
down or the company’s offer did not match the consumer’s interests. Usually
companies store only sales data at detailed level. Demand information not re-
sulting in transactions is not available. Mostly there is no such data collection
because it is either impossible, e.g., physical self-serve stores, or the data is
simply not useful, e.g., consumers inquire airline’s fare class availability mul-
tiple times. Ignoring this non-observed demand leads to an underestimation
and results further in a spiral down effect, as investigated by Cooper et al.
(2006). Therefore, stock out situations or product non-availabilities in the
sales data must be so called unconstrained, to estimate the demand quantity
one would have observed if the product had been available. Some research pa-
pers are devoted to the topic of unconstraining such censored data, see McGill
(1995), Lui et al. (2002) and Weatherford and Pölt (2002). A comparison
of all commonly known capacity unconstraining models is given in Queenan
et al. (2007). The troubling part of the independent demand assumption is
that it excludes any substitution effects by consumers. So, it is only valid in
settings with very high and strict fences in the customer segmentation, e.g.,
student discount and regular price with the control of the student ID, or when
products are very diverse such that a substitution effect is not existent, e.g.,
a car dealer with only compact cars and luxury cars but nothing in-between.
But in most situations the substitution effect can not be neglected. For exam-
ple, if the 8am flight costs EUR 800 and the 10am flight only EUR 200, many
people may consider to book the later flight even though the earlier one is
preferred. So, accounting for substitution effects is very important in order to
get a clear understanding of the underlying demand and the customers’ choice
decisions. As van Ryzin (2005) formulates it: What is needed in revenue
management research is a change from product demand models to models of
customer behavior. The choice behavior of consumers was for a long time not
considered in RM. In fact, a short self reflection shows that the availability
of discount tickets in the airline case or the room prices of competing hotels
in the same location have a huge influence in our buying decision. In recent
years, the choice aspect has been an active field of research within the RM
community. This starts with Andersson (1998) and Algers and Beser (2001),
who are describing a pilot study at Scandinavian Airlines. They formulate
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a model for optimal seat allocation which takes into account that customers
might buy up to higher fare classes or be recaptured at a different flight. The
customer choice is modeled by the multinomial logit (MNL) model and its
parameters are estimated from interviews and historical sales data. Talluri
and van Ryzin (2004a) study customer behavior under a discrete choice model
and state an optimal policy for the fare class availability control in a single leg
setting. They suggest using maximum likelihood estimation for the attributes
weight vector in an MNL to compute sale probabilities. The customer arrival
rate is assumed to be constant in time. Ratliff et al. (2008) propose a multi-
flight heuristic, generalizing the earlier approach. In their model they need,
besides historical sales and fare class availability data, also information about
the airline’s market share and values for the relative customer attractiveness
of flights and fare class alternatives. An empirical study on airline transaction
data is found in Vulcano et al. (2010). They report a significant improvement
by using choice behavior estimates in the booking control. Vulcano et al.
(2011) focus on estimating the primary demand, i.e., customers’ first choice
demand if all alternatives are available, from historical sales and availability
data. Demand is modeled by a Poisson process over multiple time periods and
customers are assumed to choose among alternatives according to an MNL
model. All of these articles, and to our best knowledge almost all other RM
papers with choice considerations, work with the same choice model, namely
the MNL model. The multinomial logit model has very appealing properties:
parameters can be efficiently computed by maximum likelihood estimation,
it has a clear and simple structure and choice probabilities of different al-
ternatives can be easily computed. Its main shortcoming is the property of
independence of irrelevant alternatives (IIA), which can result in abnormal
choice probabilities when introducing or removing alternatives from the cus-
tomer’s consideration set. A small illustrative example of IIA: consider three
hotels; a conference hotel with choice probability 0.6, a business hotel with
choice probability 0.2 and a wellness hotel with probability 0.2 to be chosen
by an arriving customer. The conference hotel is full and does not accept any
more requests. The new choice probabilities under MNL will be 0.5 for both
the business and the wellness hotel, because the MNL assumes that the ratio
between choice probabilities of two alternatives is constant and independent
of third alternatives. Whereas the substitution of business hotel instead of the
non-available conference hotel will be significantly higher in reality than the
substitution by the wellness hotel. Also, using a parametric model such as the
MNL requires one to make strong assumptions on the choice process and there
is the risk of over fitting when using more complex parametric choice models
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such as the latent class logit or mixed logit. Recently, Farias et al. (2012) and
van Ryzin and Vulcano (2011) concentrate on a choice-model quite similar to
our proposed choice-set model. Both use a non-parametric choice model origi-
nally introduced by Mahajan and van Ryzin (2001), which assumes preference
lists or sets of alternatives with a strict rank ordering. Customers choose the
available product with the highest preference, or make a non-purchase decision
if none of the products of interest is available. Farias et al. (2012) concentrate
on a robust approach finding the best demand distribution over preference
lists, which best approximates the obtained revenue in the observed dataset.
Closer to our work is van Ryzin and Vulcano (2011), who focus on the estima-
tion of the distribution over preference lists representing the customer types.
Additionally, they propose a market discovery mechanism to add relevant new
customer types to an initial set of preferences lists. They assume a Bernoulli
arrival process with a fixed rate, i.e., they assume at most one customer arrival
per time period and the intensity over all periods is constant.

1.4 Abstract of the Research

In this thesis, we develop a procedure to estimate demand for different cus-
tomer types, represented by what we call choice-sets. These choice-sets are
sets of products or choice alternatives with a strict decreasing preference order
and are very similar to the preference lists mentioned before. The estimation
algorithm is developed for available transaction data as stored at most com-
panies, i.e., sales data and product availability data at some aggregated level.
So, we do not assume time periods with at most one customer arrival nor
information on customers who do not result in a transaction. It is possible
to extend the approach to incorporate competitor offers to account for their
influences on sales. We also allow for more general demand rates, namely
we are assuming an inhomogeneous Poisson process with an exponential rate
function, motivated by statistical analysis on real sales data. The demand rate
functions per choice-sets are used to estimate unobservable demand in periods
with no overlap of choice-sets, representing the products of interest, and the
set of offered products. The unconstraining method is tested on actual airline
and hotel data and shows very promising results. We further develop a dy-
namic forecast updating procedure, which considers the correlations within the
booking horizon as well as between successive horizons. The method is tested
on hotel reservation data and shows a significant improvement in forecast ac-
curacy. Finally, we propose a new optimization model for network revenue
management problems, to compute time dependent bid prices. The model
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is extended to consider choice-set demand in order to include information on
customer choices under offered alternatives. This book provides in essence a
complete and fluent approach for incorporating the customers’ choice behavior
into a revenue management system.

1.5 Outline of the Book

The content of the book can be grouped into three main parts. The first and
also major part concentrates on the choice-set model and the unconstraining
problem, i.e., extraction of choice and demand information from given sales
and offer data. The second part focuses on booking horizon forecasting with
dynamic updating. And lastly, the third part proposes optimization models to
compute optimal sales controls on the basis of forecasted demand with choice
information, with the objective to maximize the overall revenue or profit.

Chapter 2 will introduce the choice-set demand model and propose a first
unconstraining algorithm. Chapter 3 presents an unconstraining case study
on real airline reservation data, followed by an advanced choice-set demand
estimation algorithm developed in Chapter 4. The demand unconstraining
part ends with Chapter 5 and a comparison study of different choice models
on real hotel market data. The forecasting part is covered by Chapter 6, which
presents a dynamic forecast updating method for booking horizon forecasting.
The optimization part is comprised in Chapter 7, introducing a new method to
compute time dependent bid prices in network revenue management problems.
The general model is extended to work with choice-set demand in order to
incorporate the customer’s choice behavior under offered alternatives. Finally,
Chapter 8 provides a small simulation study combining all three aspects of a
RM process, namely unconstraining, forecasting and optimization with choice-
set demand. We summarize the thesis in Chapter 9 and conclude with our
findings.





Chapter 2

The Customer Choice-set Demand Model

This chapter is based on the paper Haensel and Koole (2011b).

The following sections introduce the idea of choice-sets to model the cus-
tomer’s buying behavior and choice decisions under offered alternatives. We
are interested in establishing demand estimates for customer groups, reflecting
different choice behaviors, based on historical sales data as input. Contrary to
most of the previous research studies, see the introduction to demand models
in RM in Chapter 1, we are not assuming a general customer arrival rate with
sale probabilities resulting from offered alternatives. Rather, we assume the
demand to be made up of different customer groups, representing different buy-
ing behaviors and preferences. Demand from each group can result in sales of
different products, depending on the seller’s and competitor’s offer of alterna-
tives. These groups or customer types are called customer choice-sets. We are
presenting a demand estimation method for these choice-sets. The procedure
is based on the maximum likelihood method and to over-come the problem of
incomplete data or information, we additionally apply the Expectation Maxi-
mization (EM) algorithm. Using this demand information per choice-set, the
revenue manager obtains a clear view of the underlying demand. In doing so,
the sales consequences from different pricing and booking control actions can
be compared and optimized in order to maximize the overall revenue.

The chapter continues with the introduction of our customer choice-set model,
followed by some analysis on demand behavior in Section 2.2. In Section 2.3,
an optimal allotment control based on dynamic programming is described.
The parameter estimation method for the choice-set demand is explained in
Section 2.4. The numerical results are given in Section 2.5 and the final Section
2.6 presents our conclusions.
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2.1 Customer Choice-set Model

In this section we will explain the idea of a discrete choice-set, as earlier de-
scribed in Ben-Akiva and Lerman (1985). The previous concept, where prob-
abilities are attached to choice alternatives, is now changed into a preference
ordering of choice alternatives. The customer’s choice behavior is supposed
to be represented by the notion of choice-sets, which we define as sets of sub-
stitutable products or choice alternatives with a strict preference order. We
study the choice behavior on products, which are offered in a variety of classes
or subclasses. A best example is to consider a seat on an airplane or a hotel
room. This base product is offered to customers at different prices, denoted
as price classes, and often combined with different conditions on the prod-
uct itself, such as minimum length of stay, cancellation costs or membership
credits. The conditions are introduced to create fences between customer seg-
ments, in order to enable us to ask different prices for technically the same
product. Such segmentations are in practice rarely completely strict and ex-
clusive. Therefore, substitution effects are generally existent, which means
customers are considering and comparing different product offers and choose
according their personal preferences and needs. Let us illustrate the choice-
set concept on a small example, where we consider an airline which offers two
fare classes A and B. Fare A is the discount ticket consisting of the seat and
no extra services and fare class B is the full fare ticket, potentially including
extras such as a meal to be served during the flight. The possible choice-sets
are: {A}, {B}, {A,B} and {B,A}; C will denote the set of all choice-sets.
Choice-sets are written with a decreasing preference order from left to right.
Therefore, the choice-set {A,B} states that customers being represented by
this choice-set are strictly preferring ticket A over ticket B. In contrast, cus-
tomers with choice-set {B,A} prefer B over A. See Table 2.1 for some example
choice-set demand rates. The airline can control the booking availability of

choice-set c {A} {B} {A,B} {B,A}
Expected demand Dc 20 7 15 10

Table 2.1. Choice-set example.

all fare classes. O denotes the set of available products/open fare classes. The
demand D(f |O) of product/fare class f under offer set O is defined by

D(f |O) =
∑

c∈C

Dc · IU(c,O)=f , (2.1)



2.1. Customer Choice-set Model 17

with I denoting the indicator function and U(c, O) returns the fare class con-
tained in choice-set c with the highest preference or utility under the set of
offered alternatives O, or zero if c∩O = ∅. The amount of rejected customers,
i.e., customers whose choice-set c is non-overlapping with O and therefore
turned down, can be calculated by

D(0|O) =
∑

c∈C

Dc · IU(c,O)=0. (2.2)

Hence, the sales probability of product f ∈ O is given by

P (f |O) =
D(f |O)

D(0|O) +
∑

h∈O D(h|O)
. (2.3)

The non-purchase probability is equivalently computed by

P (0|O) =
D(0|O)

D(0|O) +
∑

h∈O D(h|O)
. (2.4)

By definition, we set P (x|O) = 0 if x /∈ O. Returning to our small airline
example, the probability of selling a certain ticket to an arriving customer for
different O is straightforward computable

P (A|O = {A,B}) =
20 + 15

0 + 20 + 15 + 7 + 10
= 0.67, (2.5)

P (B|O = {A,B}) =
7 + 10

0 + 20 + 15 + 7 + 10
= 0.33, (2.6)

P (A|O = {A}) =
20 + 15 + 10

7 + 20 + 15 + 10
= 0.87, (2.7)

P (B|O = {B}) =
7 + 15 + 10

20 + 7 + 15 + 10
= 0.62. (2.8)

A more general example can be given by assuming the market to be segmented
in such a way that different conditions are attached to the product itself, for
example cancellation possibilities, etc. See Table 2.2 for an example airline
portfolio with three groups. Each of these groups is again differentiated into
different price categories. Again, we assume that each customer has a set
of classes which represent his willingness to buy, regarding price and condi-
tions. These choice-set may consist of any coherent sequence of subclasses,
e.g.,{L2, L1,M2} or {M2,M1, H2}. The choice-sets have again a strict pref-
erence order from left to right, i.e., customers whose choice behavior can be
represented by choice-set {M2,M1, H2} want a possibility to change the ticket
and their willingness to pay is larger or equal to 460 but strictly less to 520,
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Booking Class Miles earned Changes Cancellations Price

H1 100 % charge 50 charge 100 520
H2 100 % charge 50 charge 100 460
M1 50 % charge 50 No 370
M2 50 % charge 50 No 320
L1 25 % No No 250
L2 25 % No No 230

Table 2.2. Choice-set example 2, with groups: high, medium and low.

since they are not willing to buy the H1 class. Of course the number of pos-
sible choice-sets can be very high, but with some reflection of marketing and
sales ideas we can usually restrict ourselves to choice-sets which are coherent
and are of limited length.
So far we presented the idea of choice-sets in the context of a single resource
and a monopoly seller market. But it can be easily extended to multiple re-
sources, e.g. multiple daily flights on one itinerary, as well as competitor offers
can be easily embedded in the choice-sets structure. To illustrate the incor-
poration of competitor prices, let us return to our first example with two fare
classes, A and B. Say, we have a competitor serving the same route and over-
ing also two classes a and b, equivalently denoting the discount and full fare
ticket. Our previous choice-set {A,B} is now divided into three corresponding
choice-sets which account for the different competitor offers

{A,B} ⇒







{A[a, b, ∅], B[a, b, ∅]}
{A[a, b, ∅], B[b, ∅]}
{A[b, ∅], B[∅]}






,

with [·] we denote the competitor’s active classes under which we can observe
a sale, ∅ represents the case that the competitor does not offer any class. For
example, {A[b, ∅], B[∅]} means that customers represented by this choice-set
prefer A over B for our company, but only buy class A if the competitor does
not offer class a and they will only buy class B if we do not offer A and the
competitor does not offer any class.

Consequently, a choice-set may consist of any sequence of substitutable prod-
ucts or subclasses from different comparable resources and sellers. We only
need to have a strict preference ordering, so that the customer is never inde-
cisive between two offers.
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2.2 Demand Functions

For our analysis we were able to work with real sales data of a major airline,
a low-cost airline and a European hotel reservation agency. Both problems
are very similar, we have a perishable good, e.g., seats on a certain flight
or hotel rooms for a certain date. For both datasets we observed that the
demand is increasing as we are approaching the usage date of our product.
Usually, we can not observe the true demand. The company may sell all its
capacity or influence the booking process, when making certain price offers
available or unavailable for booking. We say a price class is open when it is
available for bookings and closed otherwise. Figures 2.1 shows the airline sales
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Figure 2.1. Airline sales behavior.

behavior for a fixed itinerary and departure day of week combination, with
time stage 10 denoting the departure period. It contains all bookings with
no differentiation of fare classes aggregated over some weeks. An example
of the hotel sales behavior with aggregated sales data over multiple regions,
as well as a single region is shown in Figure 2.2. The data corresponds to
a fixed arrival date and time stages 11 and 13 denote the periods including
the arrival at the hotel. Since the hotel dataset contains reservation data
for multiple comparable hotels, we are very rarely observing total area sale
outs, i.e. the case where a whole price class within an area is unavailable for
bookings. Thus we are able to observe the untruncated booking behavior on
some kind of bird’s eye view. In addition to the monotonic increasing demand
behavior, we observe that the quantiles on days in advance, i.e., distance
between booking creation date and usage date of the product, in our hotel
dataset are consistent in time. From a correlation analysis on the airline and
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Figure 2.2. Airline and hotel sales behavior.

hotel datasets, we observe a high correlation between early and late bookings.
This confirms our idea that demand rate is following a non-decreasing curve
over time. From a least square analysis on an aggregated level, we learned
that the demand rate per choice-set c follows approximately an exponential
curve

λc(t) = βc · e
αc·t, (2.9)

for time stage t and some parameters αc and βc, with βc being non-negative.
The sign of αc depends on the definition of the booking horizon 1, . . . , T . In
our case, periods are defined as times towards usage of the product, e.g., de-
parture of the airplane at T , the resulting curve is increasing in t and αc is
positive. But, if the time stages are defined as periods prior usage of the
product, e.g., departure at t = 1, the resulting curve is decreasing in t and αc

is negative. Further, we tested the airline data if the demand per time stage
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is Poisson distributed. As statistical tests we used the likelihood ratio, the
conditional chi-squared as well as the Neyman-Scott statistic. We find that
the hypothesis can not be rejected. Consequently the demand of choice-set
c is assumed to follow an inhomogeneous Poisson process with rate function
λc(t).

With the given demand rate functions for all choice-set, we are able to com-
pute at time stage t the general arrival rate for a customer of any type by
λ(t) =

∑

c∈C λc(t), the sum of arrival rates over all choice-sets.

Also the primary demand (first choice demand), studied by Vulcano et al.
(2011), can easily be computed. The estimated primary demand of product j
at each time t is the sum of all demand rates λc(t) over all choice-sets c, where
j is the first choice class, i.e. the one with the highest preference.

2.3 A Dynamic Programming Allocation Control

An optimal control policy for a single resource problem including customer
choice behavior is described in Talluri and van Ryzin (2004a) and Talluri
and van Ryzin (2004b). In the following we will give a brief description of
the dynamic programming model and how it is applied in our context. For
detailed proofs the reader is referred to Talluri and van Ryzin (2004a). The
original model considers a time horizon divided into intervals i = 1, . . . , I such
that we have at most one customer arrival per interval. The probability of
arrival is denoted λ and assumed to be constant in time.
In our case we are assuming an inhomogeneous Poisson process, where the
arrival rate is supposed to be constant within each time stage t = 1, . . . , T .
Therefore each time stage will be divided into such intervals It, such that we
have at most one arrival per interval. The probability of any arrival at time
stage t in all intervals i is given by Λ(t) = λ(t)/It. Let us suppose we fixed a
time stage t:
At each interval i we can make a decision on which classes to offer, i.e. choosing
a set O ⊆ N , where N denotes the set of all classes. The probability that an
arriving customer buys product j when O is offered is given by Pj(O, t), where
Pj(O, t) = 0 if j /∈ O. We can compute this probability by

Pj(O, t) =

∑

c∈C λc(t) · I{U(c,O)=j}

λ(t)
. (2.10)

So the probability for a sale of class j in interval i is given by Λ(t) · Pj(O, t),
given that price classes in O are offered. Similar we can compute the no-sales
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probability P0(O, t) for each arrived customer by

P0(O, t) =

∑

c∈C λc(t) · I{U(c,O)=0}

λ(t)
. (2.11)

The no-sale probability at each interval i is then Λ(t) · P0(O, t). The value
function is defined as the maximal obtainable future revenue from period i in
time stage t and inventory level x. The Bellman equation is then given by

Vi(x, t) = Λ(t) ·max
O⊆N

{R(O, t)−Q(O, t)∆Vi+1(x, t)}+ Vi+1(x, t), (2.12)

where ∆Vi+1(x, t) = Vi+1(x, t) − Vi+1(x − 1, t). The purchase probability
Q(O, t) and the expected revenue R(O, t) from offering set O are computed
by

Q(O, t) =
∑

j∈O

Pj(O, t),

R(O, t) =
∑

j∈O

rj · Pj(O, t). (2.13)

On the boundaries the value function is defined as

Vi(0, t) = 0 ∀i = 1, . . . , I,

VI+1(x, t) =

{

V1(x, t+ 1) , if t < T,

0 , else
∀x.

Talluri and van Ryzin show in their paper that we only have to consider
the subclass of efficient sets over all possible subsets of N , when making the
decision which set of classes to offer.

Definition 2.1. A set S ⊆ N is efficient if there exist no non-negative weights
α(M) on all M ⊆ N ∪ {∅} with

∑

M⊆N∪{∅} α(M) = 1 such that

R(S, t)

Q(S, t)
≥

∑

M⊆N∪{∅} α(M)R(M, t)
∑

M⊆N∪{∅} α(M)Q(M, t)
.

We assume the collection of efficient sets E are indexed in increasing revenue
and probability order. This is possible because for an indexing of E such that
Q(S1, t) ≤ Q(S2, t) ≤ · · · ≤ Q(Sm, t) follows that the expected revenues are
also ordered in the same way. The problem of maximizing (2.12) is simplified
by choosing among all sets in E

Vi(x, t) = Λ(t) · max
k=1,...,m

{R(Sk, t)−Q(Sk, t)∆Vi+1(x, t)}+ Vi+1(x, t). (2.14)
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Theorem 2.1. Consider k∗ such that Sk∗ maximizes (2.14). For a fixed i,
the largest optimal index k∗ is increasing in the remaining capacity, and for
any fixed x, k∗ is decreasing in the remaining intervals.

The problem of identifying the efficient sets can be solved in an inductive way.
Initially we set S0 = ∅. Having the rth efficient set Sr we find the (r+1)th by

argmaxS⊆N

R(S, t)−R(Sr, t)

Q(S, t)−Q(Sr, t)
. (2.15)

Definition 2.2. A control policy is called nested if there exists an increasing
family of subsets S1 ⊆ S2 ⊆ · · · ⊆ Sm, with Sj ⊆ N, j = 1, . . . ,m. The
set index ki(x), increasing in x, is chosen at interval i when the remaining
capacity is x.

Classes are seen as “higher” if they appear earlier in the sequence. And a
policy is in fare order if the nesting order coincides with the fare order. In the
case of a nested optimal policy we can compute the protection levels by

p∗k(i) = max x

s.t. ∆Vi+1(x, t) >
R(Sk+1, t)−R(Sk, t)

Q(Sk+1, t)−Q(Sk, t)
. (2.16)

At interval i, only the classes contained in Sk will be open if the remaining
capacity is less than p∗k(t). Nested booking limits are equivalently defined by
b∗k(i) = capacity − p∗k−1(i).
In most cases we have this nested policy, and usually the optimal policy is
even nested by fare order. Nevertheless, the nested structure is not certain
and the hypothesis has to be checked to apply (2.16) for the computation of
optimal protection levels. In our test cases the policy will be in fare order.

2.4 A First Parameter Estimation Approach

The demand is assumed to follow an inhomogeneous Poisson process. As
described in section 3 we assume the demand rate per choice-set to be approx-
imately following

λc(t) = βc · e
αc·t, (2.17)

for time stage t in the booking horizon t = 1, . . . , T and some parameter α
and β depending on choice-set c, which are supposed to be positive. In our
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analysis we only work with observable sales data. Our goal is to unconstrain
these data to get a good approximation of the real demand per choice-set.
The given datasets contain the information if a class was open for bookings
at a certain time and if yes the observed number of bookings or sales. For the
parameter estimation we use the maximum likelihood method. The likelihood
function for choice-set c is

Lc(αc, βc) =
T∏

t=1

P (Sc(t)|λc(t)), (2.18)

where Sc(t) denotes the number of sales corresponding to choice-set c at time
stage t. Remember that a sale corresponding to a certain choice-set will always
materialize in its lowest available class. We will denote with “c open at t” the
fact that at least one class in c was open for bookings at time t. So we obtain
an expression for probabilities by

P (Sc(t)|λc(t)) =

{
e−λc(t)·λc(t)Sc(t)

(Sc(t))!
, if c open at t

1 , else.
(2.19)

Since we are interested in the maximum of the likelihood function we will
examine the log-likelihood function

Lc(αc, βc) = log (Lc(αc, βc))

=
T∑

t=1

log(P (Sc(t)|λc(t)))

=
T∑

t=1

Sc(t)(log(βc) + αct)− βc exp(αct)− log(Sc(t)!),

(2.20)

for which the gradient and Hessian are given by

∇Lc =
T∑

t=1

(

Sc(t)t− βct exp(αct)
Sc(t)
βc

− exp(αct)

)

, (2.21)

H(Lc) =
T∑

t=1

(

−βct
2 exp(αct) −t exp(αct)

−t exp(αct) −Sc(t)
β2
c

)

. (2.22)

The maximum likelihood estimates for parameter α and β and choice-set c are
obtained by minimizing the negative log-likelihood function

(α̂c, β̂c) = arg minα,β>0 − Lc(α, β). (2.23)
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We show in Chapter 4 that the negative log-likelihood function is unimodal
and has a unique minimizer in R × R+. We omit the proof at this point and
refer to the later chapter, which provides an in-depth analysis of the choice-set
unconstraining problem. Having the optimal choice-set demand parameter, we
can estimate the demand for unobservable time periods by a simple extrapo-
lation of the demand rate function.

For now, we did not take the interaction of choice-sets into account and sup-
posed that we know to which choice-set a sale corresponds. Let us illustrate
this with our initial example with two fare classes A and B. Consider the
two overlapping choice-sets c1 = {A} and c2 = {A,B}. Say, we observe at a
certain day a sale in class A, so we do not know if this is a realization corre-
sponding to a customer of c1 or c2, since we only have information if a class
was open, and if yes, the number of sales in it.

This leads to the following log-likelihood function

L =

T∑

t=1

F∑

f=1

logP

[

X = S(t, f)
∣
∣X ∼ Poisson

(∑

c∈C

I{U(c,t)=f} · λc(t)
)
]

,

(2.24)
where I denotes the indicator function, U(c, t) returns the preferred available
class in choice-set c at time t (U(c, t) = 0 means no available class in c at
time t), F represents the number of classes and S(t, f) denotes the observed
sales in class f at time t. From simulation we learned that the negative log-
likelihood function is in general not unimodal. Since we are usually confronted
with multiple overlapping choice-sets we have to consider 2 · |C| variables in
the resulting non-convex optimization problem.

To overcome this problem we suggest the EM method, explained in Dempster
et al. (1977). Initially we are estimating the parameter separately for all choice-
sets by ignoring the interaction of choice-sets. Further, we use the fact that
the random combination of Poisson processes gives again a Poisson process.
Given the initial estimates of the corresponding rates λ0

c(t) for all times t and
all choice-sets c, we start the iterative procedure at i = 1 by computing

P i
c

(
S(t, f)

)
=







P

[

X =

⌈

λi−1
c (t)

λi−1
overlap

(c,t)
· S(t, f)

⌉]

· I{U(c,t)=f} , if f > 0

1 , else

where X ∼ Poisson(λi
c(t)). (2.25)
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The ⌈x⌉ operator returns the closest integer greater than or equal to x. The
parameter λj

overlap(c, t) denotes the sum of the estimated rates from iteration
j over all choice-sets for which the preferred available classes coincide with
choice-set c. In the maximization step the resulting negative log-likelihood
function is then minimized separately for all choice-sets c to obtain new esti-
mates of λi

c(t) = βi
c · exp(α

i
c · t)

(αi
c, β

i
c) = arg minα,β>0 − Lc(i), (2.26)

where the log-likelihood function at iteration i for choice-set c is given by

Lc(i) =
T∑

t=1

logP i
c

(

S
(

t, U(c, t)
))

. (2.27)

We are updating the previous estimates in equation (2.25) with the new rate
estimates for choice-set c, which is the expectation step. For the maximization
step we are again interested in the shape of the negative log-likelihood function
and the formulation of the its gradient and Hessian. Since the log-likelihood
function is computed separately for each choice-set, we can compute the gra-
dient and Hessian at each iteration i as in the initial case for non-overlapping
choice-sets

∇Lc(i) =
T∑

t=1

(

S(c, t, i)t− βct exp(αct)
S(c,t,i)

βc
− exp(αct)

)

· I{U(c,t)>0} (2.28)

H(Lc(i)) =
T∑

t=1

(

−βct
2 exp(αct) −t exp(αct)

−t exp(αct) −S(c,t,i)
β2
c

)

· I{U(c,t)>0}, (2.29)

if c is open the number of corresponding sales are given by

S(c, t, i) =

⌈

λi−1
c (t)

λi−1
overlap(c, t)

· S
(
c, U(c, t)

)

⌉

. (2.30)

In Chapter 4, we show that the negative log-likelihood function (2.27) is again
unimodal. This proves that the M-step is always well defined.
The procedure is repeated until it converges. Even though convergence is in
general not certain, the EM method is known to be very robust and has been
also satisfactory employed by McGill (1995), Weatherford and Pölt (2002),
Talluri and van Ryzin (2004a) and Vulcano et al. (2011).
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EM algorithm to unconstrain demand rate function per choice-set:
Initialization: compute separately for all choice-sets c ∈ C

(α0
c , β

0
c ) = arg minα,β>0 −

T∑

t=1

log

{

P
(

Xt = S
(

t, U(c, t)
))

, if U(c, t) > 0

1 , else
,

where Xt ∼ Poisson
(
λ = β exp(αt)

)
.

Iteration Loop i = 1, ...

E-step:
For all c ∈ C

For all t = 1, ..., T

P i
c

(

S
(
t, U(c, t)

))

=







P

[

X =

⌈

λi−1

c (t)

λ
i−1

overlap
(c,t)

· S(t, U(c, t))

⌉]

, if U(c, t) > 0

1 , else

where X ∼ Poisson(λi
c(t) = βi

cexp(α
i
ct)).

end for

Lc(i) =
∑T

t=1 logP
i
c

(
S
(
t, U(c, t)

))

end for

M-step:
For all c ∈ C

(αi
c, β

i
c) = arg minα,β>0 − Lc(i)

end for

Until Stopping criteria reached.

The stopping criteria could be either a maximum number of iterations or some
kind of numeric convergence bound on changes in α and β between iterations.
The demand rate function for each choice-set c at time t is estimated as long
as at least one class contained in c is offered at t. A no sale observation at t is
regarded as a realization of the stochastic arrival process with no arrivals from
all choice-sets which intersect with the set of offered price classes at time t. The
estimation is extrapolated over periods when no price class contained in choice-
set c is offered, i.e. no customer arrivals corresponding to c are observable.
Notice that the EM method is independent of the demand rate function form.
The exponential curve is a result from our data analysis of the airline and
hotel datasets. Only the unimodality of the negative log-likelihood function
needs to be checked for different demand functions, it can be easily shown that
it also holds for constant or linear demand functions.
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2.5 Numerical Tests

In this section we present the numerical results of our estimation method. We
evaluate the estimation results on two criteria, first on how good the real rate
function is approximated. And second on the expected revenue gain by using
the estimated values compared to the real values in the optimal control policy,
evaluated on 100 independent demand scenarios and the obtained revenues are
averaged. The computation is done in MATLAB R2008a, for the optimization
we used the function “fmincon” from the optimization toolbox. The starting
parameters for fmincon are computed by a small Monte Carlo simulation. Our
input sales simulations are generated by independent demand realization from
the known demand functions per choice-sets. Here the booking process is con-
trolled via given initial booking limits. Using this procedure we are generating
1000 sales observations from where we estimate the parameter α and β for each
choice-set. The resulting estimates are averaged. In all examples the booking
horizon is set to 10 time stages. The EM method is stopped if the maximal
change of the minimized value of the negative log-likelihood function over all
choice-sets is less than 10−6% compared to the optimum from the previous
iterations. In all beneath cases this convergence bound is reached within less
than 30 steps.

2.5.1 Two overlapping choice-sets

First we analyze the case of two overlapping choice-sets, considering two prod-
ucts A and B (prices are 50 and 100) with the corresponding choice-sets
Set1 = {A} and Set2 = {A,B}, parameters are given in Table 2.3. The initial
booking limits are 10 and 10 for products A and B respectively, see Figure 2.3
to compare the estimated demand function with the original. The estimated

αSet1 βSet1 αSet2 βSet2 Revenue

Original 0.1 1 0.2 0.3 1251
Estimates 0.1646 0.9249 0.0736 0.9124 1132

Table 2.3. Case 1 - parameter and generated revenue.

demand function for Set1 is after time stage 6 a very poor estimate of the real
underlying demand function. It is a fact that the booking limit for product A
will be reached between time stage 5 and 7. This means that the parameters
for Set1 are only fitted to sales data up to this moment and extrapolated into
the future. In contrast, we observe that the estimated demand function for
Set2 approximates the real function closer at the end of the booking horizon.



2.5. Numerical Tests 29

2 4 6 8 10
1

1.5

2

2.5

3

3.5

4

4.5

5

time stages

Set 1 = {A}

 

 

2 4 6 8 10
0

0.5

1

1.5

2

2.5

time stages

Set 2 = {A,B}

 

 

real
estimate

real
estimate

Figure 2.3. Case 1 - demand function of real parameters and estimates.

When A is closed we know for sure that we observe a realization of Set2 and
thus the estimate will be more precise. The estimated α and β parameter
for both choice-sets, and the generated mean revenue using the estimates and
real parameter in the optimal booking control, are shown in Table 2.3. Hav-
ing perfect information about the demand functions for both choice-sets we
generate in average 12.9 sales of product A and 6.06 of product B giving an
average generated revenue of 1232. With our estimated parameters we gener-
ate in average 11.6 and 5.26 sales for products A and B respectively, which
results in a mean revenue of 1159. This means from only given sales data of
products A and B (generated using non-optimal booking limits), we were able
to approximate the demand rate functions such that using these estimates
we can gain 90.5% of the expected revenue from having perfect demand rate
information(PI Rev). For the moment we analyzed a case with small demand
rate values. In case 2 we will increase the α and β parameter for Set1 and
Set2, to see if the precision of our estimation performs better for higher rate
values. The new parameter as well as the newly estimated are shown with
their generated revenue in Table 2.4. The initial booking limits to generate
the sales data are 50 and 100 for products A and B respectively, the prices are
the same as above. See Figure 2.4 for a comparison of the real and estimated
demand functions. The demand rate function for Set2 is now much better
approximated. As in the previous case we observe a better fit for time stages
when A is closed. For Set1 we observe now a underestimation of the demand
rate, contrary to the previous case where the estimates where overestimating
the demand rate. This underestimation seems to be very large, but analyzing
the obtained revenue from the estimated parameter, we observe that this lack
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of accuracy does not imply a huge loss of revenue. In fact with our estimates
we are very close to the revenue obtained by perfect demand rate information.
Having this perfect information about the demand functions we can generate
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Figure 2.4. Case 2 - demand function of real parameters and estimates.

on average 63.52 sales of product A and 72.78 sales of product B. With the
estimated parameter we generated on average 26.15 sales of product A and
88.26 sales of product B. This means by using estimated demand functions
we can generate 97% of the PI Rev.

αSet1 βSet1 αSet2 βSet2 Revenue

Original 0.2 3 0.4 0.6 10454
Estimates 0.1155 3.0593 0.3169 1.3101 10134

Table 2.4. Case 2 - parameter and generated revenue.

2.5.2 Using Rounding instead the Ceiling Operator

Another question is how the estimation would perform if we replace the upper
integer operator (⌈·⌉) in equations (2.25) and (2.30) with the rounding opera-
tor (⌊·⌉). To analyze this case we will use the same parameters as before, see
Table 2.5 for a comparison of the estimates and original values. The resulting
demand rate functions for both cases are shown in Figure 2.5. As we see from
the graphs the change of operator does not have a big impact for problems
on larger demand rates. But for smaller demand rates the rounding opera-
tor tends to over-estimate the demand much more than the ceiling operator.
This is due to the generally ill conditioned problem of fitting an exponential
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Figure 2.5. Demand function for smaller (top) and larger (bottom) rates.

αSet1 βSet1 αSet2 βSet2 Revenue

Original 0.1 1 0.2 0.3 1251
Estimates ⌈·⌉ 0.1646 0.9249 0.0736 0.9124 1132
Estimates ⌊·⌉ 0.2528 0.7687 0.1742 0.5293 1079

Original 0.2 3 0.4 0.6 10454
Estimates ⌈·⌉ 0.1155 3.0593 0.3169 1.3101 10134
Estimates ⌊·⌉ 0.1221 2.8343 0.3495 1.0280 10124

Table 2.5. Parameter and generated revenue.

curve using maximum likelihood. The solver is in between multiple parameter
combinations. With the ceiling operator small steps of rate changes result in
larger steps of realization estimates and so the parameter estimation will be
more conservative. Therefore we suggest to use the ceiling operator instead of
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the rounding operator as described in the previous section.

2.5.3 Stepwise Improvement

Further, we will test if the estimation can be improved stepwise. Therefore we
compare the “first” estimates with the “second”. The first estimates are gen-
erated as before. The second estimates are obtained by the estimation from
sales realization generated using the first estimates instead of fixed booking
limits. Results are shown in Table 2.6 and the demand rate functions are
shown in Figure 2.6. Comparing the demand rate functions for Set2 we ob-

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

time stages

Set 1 = {A}

 

 

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

time stages

Set 2 = {A,B}

 

 

real

2nd estimate
1st estimate

real

2nd estimate
1st estimate

Figure 2.6. Demand function of real parameters and estimates.

serve only a small increase in fitting accuracy. But for Set1 the results of the
second estimates are almost a perfect fit, compared to the huge underestima-
tion resulting from the first estimates. There is also no loss of accuracy for
time stages when A is closed. Using the first estimates results already in 97%
of the PI Rev, with the second estimates we even improve this value to 99%.
Thus we conclude that the estimation method improves under more optimal
booking controls, since the information contained in the sales data reflects the
real demand better. And therefore it will not suffer from the spiral down effect
as discussed in Cooper et al. (2006), when used in dynamic booking controls.

2.5.4 Multiple choice-sets

In reality we have of course more than two choice-sets, thus our final study case
will consist of three price classes: Economy, Business and Premium with prices
100,150 and 200. The resulting choice-sets are: {E}, {E,B}, {B}, {B,P} and
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αSet1 βSet1 αSet2 βSet2 Revenue % PI Rev

Original 0.2 3 0.4 0.6 10454 100%
first Estimates 0.1155 3.0593 0.3169 1.3101 10134 97%

second Estimates 0.2053 2.7838 0.3429 1.0500 10442 99%

Table 2.6. Parameter and generated revenue.

choice-set α β α′ β′ α′′ β′′

{E} 0.1 6 0.0989 4.6706 0.1191 3.8758
{E,B} 0.15 2 0.0334 5.1163 0.1611 2.4389
{B} 0.2 1.5 0.1801 1.8443 0.2089 1.6768

{B,P} 0.25 1 0.1506 2.0707 0.2098 1.6605
{P} 0.3 0.5 0.3784 0.3854 0.3064 0.5213

Table 2.7. Real parameters with first (’) and second (”) estimates.

{P}, in Table 2.7 the demand parameters are shown. Again we are considering
a booking horizon of 10 time stages and the initial booking limits are set to
100,100 and 50 for fare classes E,B and P respectively. Figure 2.7 displays the
resulting demand rate functions of the first and second estimates compared
to the real values. Even the first estimates give a good approximation of the
real demand functions. But there is still a big overestimation for set {P}
and the shape of set {E,B} is very poorly approximated. With the second
estimates the approximation becomes much tighter. In Table 2.8 the sales
and revenue results from using the estimated values in the booking control are
shown. With the first estimates we have already gained a % PI Rev of 99.4%,
which is even increased to 99.6% by using the second estimates. The lower
expected revenues are resulting from the underestimation of the {E} demand
and the overestimation of {B,P} and {P} demand. This explains also the
lower capacity utilization (Cap. Util.) by using the estimates.

Sales E Sales B Sales P Cap. Util. Revenue % PI Rev

Original 92.3 119.5 36.7 248.5 34498 100%
1st est 89.8 119.7 36.7 246.2 34286 99.4%
2nd est 81.2 125 37.5 243.7 34360 99.6%

Table 2.8. Generated Revenue using real parameters and estimates (est).
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Figure 2.7. Demand function of real parameters and estimates.

2.6 Conclusion

In this chapter we have stated and analyzed a general method to estimate cus-
tomer choice-set parameter from given sales observations. Previous research
papers, such as van Ryzin (2005) and Bobb and Veral (2008), have shown
that there is a huge need in revenue management for a move from product-
based demand to customer choice demand. Based on the obtained results, we
are convinced that our method will be helpful in achieving this goal. Even
though using maximum likelihood to approximate an exponential curve from
data points is in general ill conditioned, the resulting demand curves fit the
original ones reasonably well and hence indicate a good approximation. Plus,
using the excerpt information to control the future booking process will in-
crease the resulting revenue, as well as the accuracy of future estimations.
We even observe that using the estimates in the future booking process, we
were able to generate revenue results close to optimality. The proposed uncon-
straining approach focuses on the two demand censoring dimensions. First,
the unobservable demand due product unavailability, and second, the demand
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constraining into product sales dependent on the customer preferences and
the company’s offers. The proposed demand estimation method provides a
revealing view on the actual demand with information on the choice behavior.





Chapter 3

A Demand Unconstraining Case Study

on Airline Data

This chapter is build on the paper Haensel et al. (2011b).

Accurate demand information is essential for the success of all kinds of sophis-
ticated booking or pricing controls in revenue management. Any successful
RM systems needs customer information on the micro-market level. The in-
formation should not only contain the number of customers to expect, but
also comprise information on customer behavior and preferences. What is
actually available at companies, as input to the demand estimation, is only
historical sales and availability data per price classes or products. But cus-
tomers who book the same price classes or buy the same products are not
necessarily equal; possibly some of them are also interested in other prod-
ucts or would also buy the product at a higher price. Therefore, the sales
data needs to be unconstrained in order to obtain a clear understanding of
the actual demand. The unconstraining is needed in two dimensions: First,
we are interested in the number of unobserved demand, which was turned
down by the company’s offers and did not result in a transaction. Second, we
want to know the preferences in the choice process of customers who made
a transaction. The choice-set demand model and the corresponding demand
rate functions are ideal to combine both dimensions, and we aim to estimate
demand rates per choice-set, i.e., per choice behavior group. The objective
of the chapter is to test the choice-set unconstraining method, as proposed in
the previous chapter, on real airline transaction data.

The chapter continues in the following section with the explanation of the
airline dataset, followed by the choice-set model in Section 3.2. The estimation
results are presented in Section 3.3, and our general findings are concluded in
the final section.
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3.1 Available Dataset

In our case study, we are able to work on real airline booking data of two routes
provided by Transavia Airlines, which we will call from this point simply
Route 1 and Route 2. Both routes are connecting the Amsterdam airport
Schiphol (AMS) with a Spanish airport and there is only one competitor airline
serving the same direct connection. Unfortunately, we have no information of
historic competitor prices available for our analysis. The datasets consist of
the booking information for 11 consecutive departure day of weeks, i.e., we
fixed a certain weekday for each route and work with the data of 11 weeks.
The separation of different weekdays is very common in the airline business
and based on statistical tests, which show a higher dependency and more
common characteristics for consecutive weekdays than for consecutive days.
The total bookings per departure day and route are shown in Figure 3.1.
The usual possible booking horizon consist of several months and can span a
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Figure 3.1. Total bookings for both routes and each departure.

period up to a whole year. Even so, we observe that most of the bookings
are made in a much smaller time span, namely 12 weeks prior to departure.
The average number of bookings per week are shown in Figure 3.2, where
week 1 denotes the beginning of the booking horizon and week 12 the week
including the departure day. On both routes we have F = 12 fare classes
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Figure 3.2. Average weekly bookings for both routes.

which only separate in price, as given in Table 3.1. There are no extra services

most expensive - Y Z S B M H Q V K L T N - cheapest

Table 3.1. Fare classes.

or standards associated with different fare classes. Thus, the price is the only
differentiator, so there is only one active fare class at a time. The fare class
booking and availability data is given on daily level. This means we know
for each day in the booking horizon which fare class is available for booking,
which is open, and also how many bookings are made. A whole flight can
be unavailable for bookings if all fare classes are not available/closed. Table
3.2 shows the summarized information per fare class for both routes. This
information contains the number of departures when each fare class is open,
the percentage on total booking days it is open (11 × 12 × 7 = 924 total
booking days), the total number of sales/bookings and the averaged number
of sales over all departures when the fare class was open. We find by adding
the percentages of open days in Table 3.2 that Route 1 is 12.9% and Route 2
is 9.4 % of all considered booking days closed, i.e., no fare class is available.
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Route 1

Y Z S B M H Q V K L T N

Dep. open 0 1 3 3 5 7 8 9 4 3 1 1
% open - 0.6% 0.9% 3.4% 7.5% 20% 11% 29.5% 10.1% 3.7% 0.3% 0.1%

Total sales 0 2 18 24 48 149 105 160 45 45 7 7
Avg. sales 0 2 6 8 9.6 21.3 13.1 17.8 11.3 15 7 7

Route 2

Y Z S B M H Q V K L T N

Dep. open 2 2 3 3 4 6 8 8 6 3 1 0
% open 0.2% 2.4% 4.3% 6.3% 6.6% 10.2% 16.6% 26.5% 15% 2.2% 0.5% -

Total sales 2 17 39 40 101 76 136 148 121 26 12 0
Avg. sales 1 8.5 13 13.3 25.3 12.7 17 18.5 20.2 13 12 0

Table 3.2. Performance data of Route 1 and 2.
(Dep. open - number of departures where this fare class is open, % open - fraction of possible booking days this class is open,
Total sales - total sales per class over all departures, Avg. sales - averaged sale per class over open departures.)
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The case that all fare classes are closed can have two causes: First, there were
no available seats and no further seats could have been sold. And second,
when data points are removed by our outlier detection. From the datasets
we have only information about the total sales per day, but not how they are
made up. For example, if we observe six sales for a given day, we don’t know
if they are six individual sales or two sales of size 3, etc. We observe in our
datasets some days with very large daily bookings, see Figure 3.3. The average
daily booking size of Route 1 is 2.8 with a standard deviation of 2.2, for Route
2 we observe small values with an average of 2.5 and a standard deviation of
1.8. The extreme booking sizes are likely generated by group bookings, which
we choose to exclude from our computation. Group bookings are normally
not made via the usual online sales channels, but by direct negotiation with
airlines representatives. Therefore, we will exclude booking days with more
than seven bookings and the availability for these days is set to zero. Thereby,
we are not overwriting sales data, we only exclude outlier data points from
our estimation analysis.
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Figure 3.3. Histogram of daily booking sizes for both routes.
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3.2 Customer Choice-set Demand

The concept of choice-sets is earlier introduced in Chapter 2. Customer choice-
sets are sets of choice alternatives or products with a strict preference order
and are assumed to model different choice behaviors of customers and their
selections made. The usual approach in travel demand modelling is to divide
customers into different non-overlapping groups or segments based on their
characteristics, best example is a segmentation in business and leisure cus-
tomers. Both segments are assumed to have a very different buying behavior.
The first are seen to buy more on short notice and are considered to have a
high willingness to pay, and the second are supposed to be more price sensitive
but book long in advance. In fact, our airline observes many leisure customers,
who have a relatively high willingness to pay and book close to departure, and
on the other hand also observes early booking and price sensitive business
customers. Therefore, our choice-set approach aims to distinguish customers
only by choice behavior, independent of their individual characteristics. This
can lead to choice-sets made up by a very homogeneous customer group, but
also allows a mix of different types of customers if their observed buying be-
havior is similar. The proposed demand estimation method associates demand
quantities with different choice-sets, representing different choice behaviors.

Usually, RM is concerned with the sale of a base product, e.g. in our case
seats on an airplane. The product offer is divided into several price classes
and different conditions may additionally be attached to the product itself,
such as cancellation possibilities, etc. The different conditions on the product
offers are introduced either as fences to separate customers into segments, or
as optional extras to increase the customer evaluation of the product offer.
In any case, the objective is to enable the seller to ask different prices for the
same base product. All of the resulting product offer versions are called classes
or subclasses. See Table 3.3, for an example airline portfolio with three main
groups H, M and L. At each point in time all classes may or may not be avail-
able to buy. In our example, the conditions within the groups are equal and
the price is the only differentiator. Customers are assumed to be rational and
utility maximizers, compare to Ben-Akiva and Lerman (1985). Hence, there
is only one active class per group, since the customer’s utility of a product
decreases with an increasing price. In our choice-set model we assume that
each customer has a set of classes which represent his preferences, regarding
price and conditions. In the airline example, the choice-sets may consist of
any coherent sequence of classes, e.g., {L2,L1,M2} or {M2,M1,H2,H1}. In this
context it makes no sense to consider choice-sets which are not coherent. From
the customer point of view this would mean that a customer is interested in
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Booking Class Miles earned Changes Cancellations Price

H1 100 % charge 50 charge 100 520
H2 100 % charge 50 charge 100 460
M1 50 % charge 50 No 370
M2 50 % charge 50 No 320
L1 25 % No No 250
L2 25 % No No 230

Table 3.3. Booking classes in airline example with groups high, medium and low.

buying low or high priced tickets, but no medium priced tickets. It is obvious
that we can neglect these choice-sets. A customer will always choose the avail-
able class with the highest preference/ utility within his or her choice-set. The
classes in the choice-set are displayed in hierarchic preference order, decreasing
from left to right. If none of the classes, in which the customer is interested,
is available, he or she will not buy at all.

The booking horizon is assumed to be divided into T time stages t = t1, . . . , tT ,
where t1 denotes the beginning of the booking horizon and tT the last time
stage before the departure of the airplane. In general, we observe strictly in-
creasing demand curves over the booking horizon, i.e., the demand increases
towards the time of departure in the airlines case. Even though one often
observes a drop in demand very close to the airplane’s time of departure, the
width of time stages can be defined such that the assumption of increasing
demand over time stages is justified. The assumption can be relaxed to allow
more complex demand functions, at the costs of additional parameters and
the loss of structural properties of the estimation problem. In our case of Eu-
ropean flights, we only observe a very small demand drop just before departure.

The estimation of the choice-set model is divided into two steps: First, the
identification of different choice-sets, and second, the demand estimation per
choice-set. The identification of possible choice-sets is in our test case very
straightforward. The airline offers no extras with the seat, such as extra
services or cancellation possibilities, and the considered flights are at most op-
erated once a day. Thus, the only product differentiation for a fixed itinerary
is the price of the offered fare classes. Consequently the airline has only one
available fare class at a time. All possible choice-sets can therefore be given
by combinations of consecutive fare classes (in fare order) starting with the
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cheapest class. Since price is the only differentiator, the cheapest fare class
has the highest preference for all customers and the choice-sets are only dis-
tinguishable by the upper willingness to pay. The choice-sets in our airline
test case are shown in Table 3.4. For the second estimation step, the de-

highest acceptable fare class choice-set

Y N T L K V Q H M B S Z Y
Z N T L K V Q H M B S Z
S N T L K V Q H M B S
B N T L K V Q H M B
M N T L K V Q H M
H N T L K V Q H
Q N T L K V Q
V N T L K V
K N T L K
L N T L
T N T
N N

Table 3.4. choice-sets in airline test case.

mand estimation per choice-set, we apply the algorithm proposed in Chapter
2. There, we describe a parameter estimation method for the case of Poisson
distributed demand with exponential demand functions λc(t) = βc ·exp(αc · t),
for choice-sets c and time stage t. The estimation method is based on maxi-
mum likelihood estimation (MLE) with an application of the EM-Algorithm.
The open and closing decision of fare classes are on a daily level, but the time
stages generally cover multiple days. Hence, we have to define Ot =

⋃

d∈tOt(d)
as the union of all sets of open classes Ot(d) for each day d in time stage t.
Further, we have to redefine the U(c, Ot) for the input of sets of open classes
by

U(c, Ot) =
⋃

d∈t

{{

U
(
c, Ot(d)

)}

, if U
(
c, Ot(d)

)
> 0

∅ , else.
(3.1)

The general log-likelihood functions of the estimation problem is given by

L =
∑

c∈C

∑

t=t1,...,tT

logP
[

X = S(t, c)|X ∼ Poisson
(

λc(t) · I{U(c,Ot) 6=∅}

)]

, (3.2)

where S(t, c) denotes the number of sales/observed demand in time stage t
corresponding to choice-set c. In our input data, we have only the information
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of sales per day and fare class S(d, f) and not per choice-sets. As in Chapter 2,
we propose to use the EM algorithm, introduced by Dempster et al. (1977), to
overcome this information problem in the MLE. The EM algorithm is an iter-
ative method, where parameters are computed under an expectation based on
values from previous iterations. In our application, we compute the expected
number of sales at time stage t corresponding to choice-set c in iteration i by

Si(t, c) =

⌈
∑

d∈t

λi−1
c (t)

λi−1
overlap(c, t, d)

· S
(

d, U
(
c, Ot(d)

))
⌉

, (3.3)

where λj
c(t) denotes the demand rate of choice-set c at time t in the jth iteration

of the EM algorithm, ⌈·⌉ denotes the ceiling operator and λj
overlap(c, t, d) is

defined by

λj
overlap(c, t, d) =

∑

s∈C

λj
s(t) · I{U(s,Ot(d))>0 and U(s,Ot(d))=U(c,Ot(d))}. (3.4)

Another problem occurs when the demand of choice-set c is not observable at
all days in times stage t, i.e., c is overlapping with Ot(d) for some but not all
d ∈ t. Days within a time stage do not have the same booking intensity, e.g.,
we observe different booking intensities for different weekdays. The estimated
booking intensity πt(d) of day d in time stage t is computed over historic book-
ing horizons and reflect the different weighting between days in the same time
stage and

∑

d∈t πt(d) = 1. The definition of Si(t, c) is extended to incorporate
the booking intensity with an application of the rule of proportion by

Si(t, c) =








∑

d∈t
λi−1
c (t)

λi−1
overlap

(c,t,d)
· S
(

d, U
(
c, Ot(d)

))

∑

d∈t πt(d) · I{U(c,Ot(d))>0}








. (3.5)

The starting values of the EM algorithm are obtained by ignoring the inter-
section of choice-sets

S0(t, c) =







∑

d∈t S
(

d, U
(
c, Ot(d)

))

∑

d∈t πt(d) · I{U(c,Ot(d))>0}







. (3.6)

λ0
c , with the corresponding α0

c and β0
c parameters, is obtained by minimizing
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the negative log-likelihood function separately per choice-set

(α0
c , β

0
c ) = arg minα,β>0 − L0

c

= arg minα,β>0 −
T∑

t=1

log

{

P
(

Xt = S0
(

t, c)
))

, if U(c, t) > 0

1 , else,

(3.7)

whereXt ∼ Poisson
(
λ = βc·exp(αc·t)

)
. The EM algorithm can be separated in

two steps: The expectation step (E-step), an application of equation 3.5 in the
negative log-likelihood function for each choice-set. Second, the maximization
step (M-step), which consists of minimizing −Lc separately for all choice-sets
c ∈ C. The algorithm stops if one of the following criteria is satisfied:

• maximum number of iterations reached,

• no changes in α and β values between iterations.

In general, we observe Li+1 =
∑

c∈C Li+1
c ≥

∑

c∈C Li
c = Li. This results in the

optimal solution of the MLE. Occasionally, we observe that the EM algorithm
reaches a likelihood maximum within the iteration cycle and that the final
results hold a lower likelihood. In such a case we do not use the final EM
output, but rather the intermediate results with the maximum likelihood.

3.3 Estimation Results

The proposed demand estimation method is tested on real airline reservation
data to verify: First that the choice-set model approximates the underlying
demand closely, and second that the estimation method is applicable for prac-
titioners. In our estimation example we will consider the weeks in the booking
horizon as time stages and the booking intensities π are obtained from the
previous year’s data. The estimation error is simply defined as

error = actual − estimate.

The demand estimate for any open fare class f at every booking day and
departure combination is simply computed by

D(f |O) =
∑

c∈C

λc · IU(c,O)=f , (3.8)

where O denotes the given set of open classes, in our case a singleton. The
choice-set demand is estimated for all 11 departures in both datasets. In the
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following, we will examine the choice-set estimation errors from different per-
spectives, such as: total relative errors over all booking days and price classes,
errors per time stages, and the error on fare class level. The total number of
bookings over all fare classes and per departures is slightly overestimated by
1% for Route 1 and 2.6% for Route 2, i.e., the estimation error is negative if
the estimate exceeds the actual. The total relative estimation errors for all
departures are shown in Figure 3.4. We observe no pattern of constant over

1 2 3 4 5 6 7 8 9 10 11
−20%

−10%

0%

10%

20%

departures

Route 1

1 2 3 4 5 6 7 8 9 10 11
−20%

−10%

0%

10%

20%

departures

Route 2

Figure 3.4. Total relative estimation errors per departure for both routes.

or under estimation and please note that we are considering total numbers of
usually less than 100 bookings. Figure 3.5 shows the average weekly bookings
and the corresponding estimation errors. We observe, especially for Route 1,
a slight constant overestimation in booking weeks 7-11. The last time stage,
week 12, is underestimated for both routes. But when comparing the estima-
tion errors to the average bookings, we find the errors to be considerably small
in proportion. Finally, we look into the estimation error on fare class level,
with the results given in Table 3.5. As also shown in Table 3.2, we find that
some fare classes are used much more often than other. Very high and very
low classes are not often available for booking and thus we have limited data
to estimate the corresponding choice-sets. But even with this limited data,
the estimation errors are considerably small compared to the average booking
number when the considered fare class was available. The consideration of
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Avg weekly bookings
Avg weekly error

Avg weekly bookings
Avg weekly error

Figure 3.5. Average weekly bookings with the average approximation error for both
routes.

error results at more frequently used classes shows very low average errors for
both routes. These results reinforce our positive conclusion on the proposed
choice-set based estimation method.
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Route 1

Y Z S B M H Q V K L T N
% open - 0.6% 0.9% 3.4% 7.5% 20% 11% 29.5% 10.1% 3.7% 0.3% 0.1%

Avg. sales 0 2 6 8 9.6 21.3 13.1 17.8 11.3 15 7 7
Est. error - -0.5 2.3 -0.3 0.8 1.3 -0.5 -1.3 -1.0 -2.6 -0.1 -0.1

Route 2

Y Z S B M H Q V K L T N
% open 0.2% 2.4% 4.3% 6.3% 6.6% 10.2% 16.6% 26.5% 15% 2.2% 0.5% -

Avg. sales 1 8.5 13 13.3 25.3 12.7 17 18.5 20.2 13 12 0
Est. error 0.5 -1.8 -1.7 0 -1.5 1.4 -0.6 0 -2.3 1 0.6 -

Table 3.5. Error Results per fare class for both routes.
(% open - fraction of possible booking days this class is open, Avg. sales - averaged sale per class over open departures,
Est. error - averaged estimation error per class.)
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3.4 Conclusion

In this chapter, we studied the problem of unconstraining sales data per price
classes into demand estimates per customer choice behavior. Our proposed
estimation method is tested on real airline data. The results show a slight
overestimation on the total demand over all fare classes, but it should be
noted that the total considered sales figures are usually smaller than 100.
Hence, estimation errors of 5% are equivalent to an actual error of at most 5
bookings. Much more interesting than the results on the total bookings are
the estimation errors on the fare class level. Here we observe small errors
for all fare classes and especially very low values for frequently used classes.
Further, the estimation method shows a very good computational behavior;
the EM method converges in general within 10-15 iterations. This makes
the algorithm feasible for practitioners. Overall, we find that the choice-set
model gives a very close approximation of the real underlying customer choice
behavior, and that the estimation method can be successfully implemented
in real-world applications. Demand information on choice-set level provides
the revenue manager with detailed information on the price elasticity and the
choice preferences of his customers. This information is crucial for any form
of pricing or booking control.



Chapter 4

An Advanced Choice-set Demand

Estimation Method

This chapter deals with an in-depth analysis of the choice-set demand uncon-
straining problem, as described in Chapter 2. A special emphasis is put on the
twofold incomplete data knowledge. Namely first, the incomplete knowledge
occurring when demand is not observable due to product unavailabilities. And
second, in case of sales realization the actual contributing choice-set/ customer
group which created the sale is not exactly known when multiple choice-sets
overlap. We start the analysis in Section 4.1 by concentrating on the com-
plete knowledge case and derive some helpful properties. The results are then
extended to the incomplete knowledge problem in Section 4.2. Section 4.3
summarizes our findings. The chapter concludes with an advanced demand
unconstraining algorithm, stated in pseudo code in Section 4.4. The new algo-
rithm is used in the choice-set demand estimation problems in the remainder
of the book.
Remember that the demand is assumed to follow an inhomogeneous Poisson
process and the demand rate per choice-set c is given by

λc(t) = βce
αct, (4.1)

for time stage t in the booking horizon t = 1, . . . , T and some parameter α
and β depending on choice-set c. The Poisson distribution is only defined for
positive realizations, so λc is not defined for βc < 0.

4.1 Complete Data Knowledge

For the parameter estimation we use the maximum likelihood method. The
likelihood function for choice-set c is

Lc(αc, βc) =
T∏

t=1

P (Sc(t)|λc(t)), (4.2)
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where Sc(t) denotes the number of sales corresponding to choice-set c at time
stage t. Remember that a sale corresponding to a certain choice-set will always
materialize in the most preferred available class/ product. We will denote with
“c open at t” the fact that at least one product in c was open for bookings at
time t. So we obtain an expression for probabilities by

P (Sc(t)|λc(t)) =

{
exp(−λc(t))λc(t)Sc(t)

(Sc(t))!
, if c open at t

1 , else.
(4.3)

Since we are interested in the maximum of the likelihood function we will
examine the log-likelihood function

Lc(αc, βc) = log (Lc(αc, βc))

=
T∑

t=1

log(P (Sc(t)|λc(t)))

=
T∑

t=1

(

Sc(t)(log(βc) + αct)− βce
αct − log(Sc(t)!)

)

I{U(c,t)>0},

(4.4)

where I denotes the indicator function, U(c, t) returns the most preferred class
in choice-set c at time t (U(c, t) = 0 means no available class in c at time t).
The gradient and Hessian are given by

∇Lc =
T∑

t=1

(

Sc(t)t− βcte
αct

Sc(t)
βc

− eαct

)

I{U(c,t)>0} (4.5)

H(Lc) =
T∑

t=1

(

−βct
2eαct −teαct

−teαct −Sc(t)
β2
c

)

I{U(c,t)>0}. (4.6)

Let us denote with Tc the set of all time stages t with Uc,t > 0. If there exist no
time stages t with Uc,t > 0, i.e., the choice-set is not observable, the choice-set
will not be considered in the estimation. In the case that there exists only one
observable time stage t, i.e., |Tc| = 1, we simply set α̂c = 0 and β̂c = Sc(t).
Let us compute the gradient and the Hessian at the corresponding point

∇Lc(α̂c, β̂c) =

(

Sc(t)t− β̂ct
Sc(t)

β̂c
− 1

)

=

(
0
0

)

(4.7)

H
(
Lc(α̂c, β̂c)

)
=

(

−β̂ct
2 −t

−t − 1
β̂c

)

. (4.8)
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We further check for the negative definiteness of the Hessian at our stationary
point, by computing

(
x y
)

(

−β̂ct
2 −t

−t − 1
β̂c

)(
x
y

)

= −



xt

√

β̂c +
y
√

β̂c





2

, (4.9)

for some point (x y) with y > 0. Hence, for β̂c > 0 we have negative
definiteness of the Hessian, in other words, (α̂c, β̂c) is a maximizer of the
log-likelihood function. In case of |Tc| = 1 and Sc(t) = β̂c = 0, we assume
by common sense that the probability of a zero outcome is maximized by
setting the Poisson rate to zero. In the remainder, we will consider the general
situation with |Tc| ≥ 2. If Sc(t) = 0 for all observed time stages t, we simply
set αc and βc to zero, by a similar reasoning that the probability of only zero
outcomes is maximized by the zero demand rate. We like to exclude such
trivial and not interesting process with λc = 0 from the investigation and
assume in the remainder that at least one sales observation is strictly greater
than zero and this implies βc > 0.
The following proposition will help us in the maximization of our log-likelihood
function.

Proposition 4.1. The negative log-likelihood function is unimodal in R×R+.

Proof. We will use Theorem 50 from Demidenko (2004) Criterion of Unimodal-
ity: Let F (u) be a twice differentiable function of u ∈ R

n such that ‖u‖ → ∞
implies that F (u) → ∞. If at each point where the gradient is zero, the Hes-
sian is positive definite, then F has a unique minimum on R

n, i.e. the function
is unimodal.
We observe that ‖(αc, βc)‖ → ∞ implies that the Poisson rate λc → ∞ or 0,
this implies for the likelihood function (4.2) Lc(αc, βc) → 0, since any sales
realization Sc(t) < ∞ and at least one is greater than zero. Hence, this im-
plies that −Lc(αc, βc) → ∞. It remains to show that the Hessian of the
negative log-likelihood function is positive definite at all stationary points,
i.e. where ∇(−Lc) = 0. To check positive definiteness of a matrix, we have
to verify that all determinants of its leading principal minors are positive.
By differentiating −Lc(α, β), see (4.4), we easily conclude that the gradient
is given by ∇(−Lc) = −∇Lc and from that we can compute the Hessian by
H(−Lc) = −H(Lc) and obtain

H(−Lc) =
∑

t∈Tc

(

βct
2eαct teαct

teαct Sc(t)
β2
c

)

.
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The determinant of the first leading principal minor is
∑

t∈Tc
βct

2eαct > 0,
since βc > 0. For the second leading principal minor, which coincides with the
Hessian, we need the condition that the gradient is zero.

∑

t∈Tc

(
Sc(t)t− βcte

αct
)
= 0 (4.10)

∑

t∈Tc

(
Sc(t)

βc
− eαct

)

= 0. (4.11)

The determinant of the second leading principal minor is given by
(
∑

t∈Tc

t2eαct

)(
∑

t∈Tc

Sc(t)

βc

)

−

(
∑

t∈Tc

teαct

)2

. (4.12)

Using (4.11) we can eliminate Sc(t) in (4.12)

(
∑

t∈Tc

t2eαct

)(
∑

t∈Tc

eαct

)

−

(
∑

t∈Tc

teαct

)2

, (4.13)

which can further be simplified to
∑

t1,t2∈Tc

(t21 − t1t2) exp
(
αc(t1 + t2)

)
. (4.14)

Let us for a moment concentrate an a slightly different expression
∑

t1,t2∈Tc

exp
(
αc(t1 + t2)

)

︸ ︷︷ ︸

>0

(t21 − t1t2 + t22 − t1t2)
︸ ︷︷ ︸

=(t1−t2)2≥0

, (4.15)

which is clearly positive for |Tc| > 1. From symmetry we have that
∑

t1,t2∈Tc

(t21 − t1t2) =
∑

t1,t2∈Tc

(t22 − t1t2)

and so we can rewrite (4.15) into
∑

t1,t2∈Tc

exp
(
αc(t1 + t2)

)
2(t21 − t1t2) > 0 (4.16)

Dividing (4.16) by two gives that (4.14) is positive and hence the second
leading principal minor is positive, by the fact that

2x > 0 ⇒ x > 0.

Thus we have shown unimodality of the negative log-likelihood function.
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We obtain the maximum likelihood estimates for the parameter α and β for
choice-set c by minimizing the negative log-likelihood function

(α̂c, β̂c) = arg minα,β>0 − Lc(α, β) (4.17)

The next proposition shows that problem (4.17) has a unique solution.

Proposition 4.2. Suppose that the choice-set c is observable at all time stages,
i.e., |Tc| = T . Then the following holds: The optimization problem (4.17) has
a unique minimizer (α̂c, β̂c). Parameter α̂c corresponds to the unique root of
the function

f(αc) =
T−1∑

t=0

(
eαct − eαcT

1− eαcT

)

−
Σ2

Σ1
. (4.18)

β̂c can be directly computed by

β̂c =
Σ1

∑T
t=1 e

α̂ct
=

Σ1(1− eα̂c)

(eα̂c − eα̂c(T+1))
. (4.19)

Σ1 and Σ2 are aggregated sales numbers and defined as

Σ1 =
T∑

t=1

Sc(t) and Σ2 =
T∑

t=1

tSc(t). (4.20)

Proof. At the beginning we need to derive some results for the geometric series
of eαc and its derivative. The geometric series is

n∑

i=1

eαci =
1− eαc(n+1)

1− eαc
− 1 =

eαc − eαc(n+1)

1− eαc
, (4.21)

and its derivative is

n∑

i=1

ieαci =
−(n+ 1)eαc(n+1)(1− eαc)− (1− eαc(n+1))(−eαc)

(1− eαc)2

= eαc
1− eαc(n+1) − (n+ 1)eαcn(1− eαc)

(1− eαc)2
. (4.22)

Next, we will show that there exists a unique stationary point of the gradient
(4.5), that is, ∇−Lc(α̂c, β̂c) = 0 and that the point (α̂c, β̂c) is uniquely defined.
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Therefore, we set the gradient equal to zero, split it into the two dimensions
and observe

0 =
T∑

t=1

(
Sc(t)t− βcte

αct
)
⇔ 0 = Σ2 −

T∑

t=1

βcte
αct (4.23)

0 =
T∑

t=1

(
Sc(t)

βc
− eαct

)

⇔ 0 = Σ1 −
T∑

t=1

βce
αct. (4.24)

Reorganizing (4.24) and applying (4.21), we obtain an expression for β

βc =
Σ1

∑T
t=1 e

αct
=

Σ1(1− eα)

(eα − eα(T+1))
. (4.25)

From (4.23) we have

Σ2 = βc

T∑

t=1

teαct. (4.26)

For a better visualization, we will substitute x = eαc . Combining the last
equation with (4.22) and (4.25), we obtain

Σ2 =
Σ1(1− x)

(x− xT+1)
· x ·

1− xT+1 − (T + 1)xT (1− x)

(1− x)2

Σ2

Σ1
=

1− xT+1

(1− xT )(1− x)
−

(T + 1)xT

(1− xT )

=
TxT+1 − (T + 1)xT + 1

(1− xT )(1− x)
. (4.27)

We use the expanded formulation of the divider

(1− xT )(1− x) = 1− x+ xT+1 − xT ,

in order to cancel and simplify the equation

Σ2

Σ1
= 1 +

(T − 1)xT+1 − TxT + x

(1− xT )(1− x)

= 1 + x
(T − 1)xT − TxT−1 + 1

(1− xT )(1− x)

= 1 + x
(T − 1)xT − TxT−1 + 1

(1− xT )(1− x)

(1− xT−1)

(1− xT−1)
.
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The same trick can be iteratively applied

Σ2

Σ1
= 1 + x

(1− xT−1)

(1− xT )

(

1 + x
(T − 2)xT−1 − (T − 1)xT−2 + 1

(1− xT−1)(1− x)

(1− xT−2)

(1− xT−2)

)

= 1 +
1

1− xT

T−1∑

t=1

xt(1− xT−t)

= 1 +
T−1∑

t=1

xt − xT

1− xT

(

= 1 +
1

1− x
−

1

1− xT
−

(T − 1)xT

1− xT

)

=
T−1∑

t=0

xt − xT

1− xT
. (4.28)

Hence, we define a function f(x)

f(x) =
T−1∑

t=0

xt − xT

1− xT
−

Σ2

Σ1
. (4.29)

The argument x = 1 would result in a term 0
0 , which is not defined, so x = 1 is

not contained in the domain of f . Let us inspect the limits of f(x), remember
that Σ1 and Σ2 are independent of x. The results are

lim
x→0

T−1∑

t=0

xt − xT

1− xT
−

Σ2

Σ1
= lim

x→0
1 +

T−1∑

t=1

xt − xT

1− xT
︸ ︷︷ ︸

→0

−
Σ2

Σ1

= 1−
Σ2

Σ1
︸︷︷︸

≥1

≤ 0

lim
x→∞

T−1∑

t=0

xt − xT

1− xT
−

Σ2

Σ1
= lim

x→∞
1 +

1

1− x
︸ ︷︷ ︸

→0

−
1

1− xT
︸ ︷︷ ︸

→0

−
(T − 1)xT

1− xT
︸ ︷︷ ︸

→T−1

−
Σ2

Σ1

= T −
Σ2

Σ1
= T −

T∑

t=1

t
Sc(t)

Σ1
︸ ︷︷ ︸

≤T

≥ 0.

So the function goes from negative values to positive values. The roots x0 of
the function f(x) are corresponding to our stationary points of the gradient
(4.5), by simply re-substituting

exp(α̂c) = x0 ⇒ α̂c = log(x0). (4.30)
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We will further show that there exists exactly one x0 such that f(x0) = 0.
The first derivative is given by

f ′(x) =
T−1∑

t=1

(txt−1 − TxT−1)(1− xT ) + TxT−1(xt − xT )

(1− xT )2

=
T−1∑

t=1

txt−1 + (T − t)xt+T−1 − TxT−1

(1− xT )2
. (4.31)

With the help of Lemma 4.1, we observe that all terms in the sum of f ′(x) are
non-negative and so the function is monotone increasing.
Let us now investigate the undefined point x = 1, by computing the limits from
the left and right hand side. First, we rewrite function f into a composition
of two differentiable functions g1 and g2

f(x) = 1 +
g1(x)

g2(x)
−

Σ2

Σ1
(4.32)

g1(x) =
T−1∑

t=1

(
xt − xT

)

g2(x) = 1− xT .

The limits of both g functions are

lim
x→1

g1(x) = lim
x→1

T−1∑

t=1

xt − xT = 0 (4.33)

lim
x→1

g2(x) = lim
x→1

1− xT = 0. (4.34)

Thus, we can apply l’Hospital’s rule

lim
x→1

g1(x)

g2(x)
= lim

x→1

g′1(x)

g′2(x)

= lim
x→1

T−1∑

t=1

txt−1 − TxT−1

1− TxT−1

= 1 + lim
x→1

T−1∑

t=2

txt−1 − TxT−1

1− TxT−1

= 1 +
T−1∑

t=2

t− T

1− T
. (4.35)
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Using this in the limit investigation for f , we obtain

lim
xր1

f(x) = 1−
Σ2

Σ1
+ lim

xր1

g1(x)

g2(x)
= 2 +

T−1∑

t=2

t− T

1− T
−

Σ2

Σ1
(4.36)

lim
xց1

f(x) = 1−
Σ2

Σ1
+ lim

xց1

g1(x)

g2(x)
= 2 +

T−1∑

t=2

t− T

1− T
−

Σ2

Σ1
. (4.37)

We observe that limxր1 f(x) = limxց1 f(x) < ∞ and this implies that f(x)
is continuously extendable at x = 1. For all x > 0: limx→c f(x) = f(c) and
so f is continuous. Thus, we can apply the intermediate value theorem, which
states that if f is a real valued continuous function on [a, b] and u is a number
between f(a) and f(b), then there exists a c ∈ [a, b] such that f(c) = u. This
implies that there exists x0 on the domain of f , such that f(x0) = 0. Further,
since f ′(x) is monotone increasing, x0 is unique.
The exponential and the logarithmic function are one-to-one mappings and
therefore the expressions for αc and βc are uniquely defined by (4.25) and
(4.30). It remains to show that the stationary point (α̂c, β̂c) of the gradient is
indeed a minimum and no saddle point of the negative log-likelihood function
Lc. In the proof of Proposition 4.1, we have already shown that the determi-
nate of both leading principle minors of −Lc are strictly positive. Thus, the
point (α̂c, β̂c) is a minimizer of (4.17).

Lemma 4.1. For all t, T ∈ N such that t ≤ T and for all x > 0 holds:

(T − t)xT+t−1 + txt−1 ≥ TxT−1. (4.38)

Proof. The proof goes in two parts, first we proof the lemma for x ∈ (0, 1] and
afterwards for x > 1. Let us suppose the contrary holds for x ∈ (0, 1], such
that

(T − t)xT+t−1 + txt−1 < TxT−1

(T − t)xT + t < TxT−t.

Moving all terms on one side, we obtain

0 < TxT−t − (T − t)xT
︸ ︷︷ ︸

=f(x)

−t.

Let us investigate f(x) at the boundaries

lim
x→0

f(x) = 0 and f(1) = t.
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We would like to show that f(x) ≤ t for all x in (0, 1], therefore we compute
the first derivative

f ′(x) = T (T − t)xT−t−1 − T (T − t)xT−1 = T (T − t) (xT−t−1 − xT−1)
︸ ︷︷ ︸

≥0

≥ 0.

So, we can conclude

0 < TxT−t − (T − t)xT − t = xT−t
(
T − (T − t)xt

)

︸ ︷︷ ︸

≤t

−t

≤ t− t = 0.

That is a contradiction, so the lemma is true for x ∈ (0, 1]. Let us split both
sides of (4.38) into two functions f and g

f(x) = (T − t)xT+t−1 + txt−1

g(x) = TxT−1.

We know that f ≥ g for x ∈ (0, 1] and in fact for x = 1 we observe f = g. Let
us investigate both functions according to (4.38) for x > 1

f(x) > g(x)

f(x)− g(x) > 0

(T − t)xT+t−1 + txt−1 − TxT−1 > 0

(T − t)xt +
t

xT−t
− T > 0

(T − t) xt
︸︷︷︸

>1
︸ ︷︷ ︸

>T−t

−
(
T −

t

xT−t
︸ ︷︷ ︸

<t

)

︸ ︷︷ ︸

<T−t

> 0.

(4.39)

This proofs the lemma for x > 1.

4.2 Incomplete Data Knowledge

So far, we disregarded the interaction of choice-sets and supposed that we
know to which choice-set a sale corresponds. Let us consider three prod-
ucts p1, p2, p3 and the two choice-sets, which are given by c1 = {p3, p2} and
c2 = {p3, p2, p1}. Say, we observe a sale of product p3. Then, we do not know



4.2. Incomplete Data Knowledge 61

if this is a realization corresponding to a customer of c1 or c2, since we only
have information if a product was available and the corresponding number of
sales.

This leads us to the following incomplete data log-likelihood function

L =
T∑

t=1

F∑

f=1

logP

[

X = S(t, f)
∣
∣X ∼ Poisson

(∑

c∈C

I{U(c,t)=f}λc(t)
)
]

(4.40)

with I denoting the indicator function, U(c, t) returns the most preferred prod-
uct or class in choice-set c at time t (U(c, t) = 0 means that c is non-observable
at time t), F represents the number of classes and S(t, f) denotes the observed
sales in class f at time t. From simulation, we learned that the negative log-
likelihood function is in general not unimodal. Since we are usually confronted
with multiple overlapping choice-sets we have a to consider 2|C| variables in
the resulting non-convex optimization problem.

To overcome this incomplete data problem we suggest an application of the
Expectation-Maximization (EM) algorithm, first published in Dempster et al.
(1977) and detailed described in McLachlan and Krishnan (1997). The EM
algorithm is an iterative procedure to compute maximum likelihood estimates
(MLE) in situations with missing data or incomplete data knowledge. To
illustrate the algorithm, let us denote the observed data vector by y, the
complete data by x and unknown parameter by θ. Further, the p.d.f. of the
complete data random variable is denoted by f(x, θ). Thus, the complete data
log-likelihood function is given by

L(θ) = log f(x, θ).

The complete data MLE is obtained by

θ∗ = argmax
θ

L(θ).

The idea of the EM approach is to replace the complete data log-likelihood
with the conditional expectation given the observed data y and a current
estimate of θ. The procedure is therefore split into the E-step, expectation
step, and the M-step, maximization step. In addition, we need some initial
estimate of the unknown parameter, denoted by θ(0). The algorithm is then
defined at each iteration i = 1, 2, . . . by:
The E-step calculating the conditional expectation

Q(θ, θ(i−1)) = E[L(i)(θ)|y, θ(i−1)]. (4.41)
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The M-step computing a new estimate of θ by

θ(i) = argmax
θ

Q(θ, θ(i−1)). (4.42)

The EM method satisfies that the log-likelihood function is non-decreasing
during the iterations

L(θ(i+1)) ≥ L(θ(i)).

Returning to our problem, at iteration i = 0, we are initially estimating the
parameter separately for all choice-sets by ignoring the interaction between
them. Further we use the fact that the random combination of Poisson pro-
cesses gives again a Poisson process. Being in iteration i ≥ 1 and given the
previous estimates of rates λi−1

c (t) for all times t and all choice-sets c, we
compute the estimated sales corresponding to choice-set c and time stage t by

Si
c(t) =

λi−1
c (t)

λi−1
overlap(c, t)

S(t, U(c, t)), (4.43)

where λj
overlap(c, t) denotes the sum of the estimated rates from iteration j

over all choice-sets for which the most preferred available classes coincide with
the one of choice-set c. Remember that U(c, t) returns the most preferred class
of choice-set c at time t, and so S(t, U(c, t)) represents the sales made in the
chosen class. Since λc > 0 for all choice-sets c, Si

c(t) is not restricted to integer
values, but in the likelihood function we work with the Poisson distribution,
which only assumes integer values of Sc. We will denote the decimal place of
Si
c(t) with

γc,t,i = Si
c(t)−

⌊
Si
c(t)
⌋
, (4.44)

with ⌊x⌋ denotes the floor operator, returning the closest integer less or equal
to x. If γ takes a positive value, the algorithm is actually in between two
values for Sc(t), the floor ⌊Sc(t)⌋ and the ceiling

⌈
Si
c(t)
⌉
. We consider γ

as a probability measure for both values. As mentioned before, the Poisson
distribution only assumes integer values. From Johnson (2007), we know that
a Poisson distributed random variable is logarithmically concave (log-concave).
An example of the log-concave combination of the Poisson distribution and the
equivalent convex combination of the negative logarithmic Poisson distribution
are shown in Figure 4.1. A function is called log-concave if the logarithm of
the function is concave. Since our approach is to minimize the negative log-
likelihood function, we aim to have a convex approximation of the probability
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Figure 4.1. Poisson distribution with its log-concave combination and the negative
log Poisson distribution and the convex combination, an example for λ = 5.

of rational sales estimates in the negative log-likelihood function. Thus, we
need a concave approximation in the log-likelihood function and a log-concave
approximation in the probability distribution function. Therefore, we compute
the log-concave γ-combination of the probabilities of both possible integer
values

P
( ⌈

Si
c(t)
⌉
|λc(t)

)γc,t,iP
( ⌊

Si
c(t)
⌋
|λc(t)

)1−γc,t,i =
e−λc(t)λc(t)

Si
c(t)

(⌈Sc(t)⌉!)γc,t,i(⌊Sc(t)⌋!)1−γc,t,i
.

The probability for the estimated rational sales value is consequently given
by

P
(
Si
c(t)|λc(t)

)
=







e−λc(t)λc(t)S
i
c(t)

(⌈Sc(t)⌉!)
γc,t,i (⌊Sc(t)⌋!)

1−γc,t,i
, if U(c, t) > 0

1 , else.
(4.45)

The expected likelihood function for choice-set c at the ith iteration of the EM
algorithm is then

Li
c(αc, βc) =

T∏

t=1

P
(
Si
c(t)|λc(t)

)
. (4.46)
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Thus, the corresponding expected log-likelihood function is

Li
c(αc, βc) = log

(
Li
c(αc, βc)

)

=

T∑

t=1

log
(

P
(
Si
c(t)|λc(t)

))

=
T∑

t=1

(

Si
c(t)(log(βc) + αct)− βce

αct

− log
(
(⌈Sc(t)⌉!)

γc,t,i(⌊Sc(t)⌋!)
1−γc,t,i

))

I{U(c,t)>0} (4.47)

for which the gradient and Hessian are given by

∇Li
c =

T∑

t=1

(

Si
c(t)t− βcte

αct

Si
c(t)
βc

− eαct

)

I{U(c,t)>0} (4.48)

H(Li
c) =

T∑

t=1

(

−βct
2eαct −teαct

−teαct −Si
c(t)
β2
c

)

I{U(c,t)>0}. (4.49)

Remember from the previous section that Tc denotes the set of observable
time stages t of choice-set c. Choice-sets with |Tc| = 0 are disregarded in the
estimation. If |Tc| = 1, we set αc = 0 and βc = Sc(t) for t ∈ Tc. In the
remainder we assume the general situation that |Tc| ≥ 2.

Next, we need to validate that Proposition 4.1 and Proposition 4.2 also hold
for the incomplete-data formulation.

Proposition 4.3. The negative of the log-likelihood function (4.47) is uni-
modal in R× R+.

Proof. The proof of Proposition 4.1 will be used and we apply again Theorem
50 from Demidenko (2004). We have that if ‖(αc, βc)‖ → ∞ the likelihood
(4.46) Lc(α

i
c, βc) → 0 and this implies that −Li

c(αc, βc) → ∞. It remains
to show that the Hessian of the negative log-likelihood function is positive
definite at all stationary points, i.e. where ∇(−Li

c) = 0. To check positive
definiteness of a matrix, we have to verify that all determinants of its leading
principal minors are positive.
In the remainder of the proof, we only need the gradient and the Hessian of the
negative log-likelihood function. By comparing the gradient and the Hessian
of the incomplete-data knowledge case ((4.48) and (4.49)) with the ones for
the the complete-data knowledge case ((4.5) and (4.6)), we find that they are
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identical. Only the S values were in the complete-data knowledge case integer
and will now also take rational values, but they are still non-negative and that
is all we need. So the proof is simply a repetition of the steps in the proof of
Proposition 4.1 and we omit them here.

Proposition 4.4. Suppose that the choice-set c is observable at all time stages,
i.e., |Tc| = T . Then the following holds: The minimization of the negative of
the log-likelihood function (4.47) has a unique minimizer (α̂c, β̂c). Parameter
α̂c corresponds to the unique root of the function

f(αc) =
T−1∑

t=0

(
eαct − eαcT

1− eαcT

)

−
Σ2

Σ1
, (4.50)

and β̂c can be directly computed by

β̂c =
Σ1

∑T
t=1 e

α̂ct
=

Σ1(1− eα̂c)

(eα̂c − eα̂c(T+1))
. (4.51)

Σ1 and Σ2 are aggregated sales numbers and defined as

Σ1 =

T∑

t=1

Sc(t) and Σ2 =

T∑

t=1

tSc(t). (4.52)

Proof. The proof is a full repetition of the proof for Proposition 4.2. It first
shows that there exists a unique stationary point of the gradient (4.48). And
afterwards shows that this point corresponds to the unique root of function f ,
defined by (4.50). The gradient and the Hessian are identical for both cases,
except that S is now rational, but this fact is not used in the proof. All steps
are omitted and we refer to the proof of Proposition 4.2.

Algorithm 4.1. If |Tc| < T , we have initial estimates (α0, β0).
Do Loop for iterations i = 1, . . . over the following steps:

1. step: set Ŝ
(i)
c (t) =

{

Sc(t) , if Uc(t) > 0

βi−1e
αi−1t , else

2. step: Σ1 =
∑T

t=1 Ŝ
(i)
c (t) and Σ2 =

∑T
t=1 tŜ

(i)
c (t)

3. step: find the unique root αi of f(α) =
∑T−1

t=0

(
eαt−eαT

1−eαT

)

− Σ2
Σ1
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4. step: compute βi =
Σ1∑T

t=1 e
α̂it

= Σ1(1−eα̂i )

(eα̂i−eα̂i(T+1))

Until (αi, βi) converged

Note that in case of |Tc| = T , we have convergence of the algorithm after the
first iteration. This results from the uniqueness of the solution (α∗, β∗) in
Proposition 4.2. If |Tc| < T , we assume to have some rough estimates (α′

c, β
′
c)

such that we can compute

Ŝ′
c(t) =

{

Sc(t) , if Uc(t) > 0

β′
ce

α′
ct , if Uc(t) = 0

, (4.53)

and apply Algorithm 4.1 to compute (α̂c, β̂c).

Proposition 4.5. Suppose that the choice-set c is not observable at all time
stages, i.e., |Tc| < T . Then the following holds: For some starting values
(α0, β0) the previous Algorithm 4.1 converges to some values (α∗, β∗). And
(α∗, β∗) is a minimizer of the negative of the log-likelihood function (4.47).

Proof. Algorithm 4.1 describes a separate EM algorithm for the incomplete
data problem with 2 ≤ |Tc| < T . Sales values Sc(t) are given for t ∈ Tc and
unknown for t ∈ T̄c, with T̄c denoting the complement of Tc, i.e., the set of
non-observed time stages. We are aiming to compute parameters (α∗, β∗),
which maximize the complete data log-likelihood function

(α∗, β∗) = arg max
α,β>0

L̃c(α, β)

= arg max
α,β>0

T∑

t=1

log
(

P
(
X = Sc(t)|X ∼ Poisson(λ(t) = βeαt)

))

.

(4.54)

Having some parameter estimates (α′, β′), we are able to compute estimated
sales values for the unknown time stages, as in step 1 of the algorithm, by

Ŝc(t, α
′, β′) =

{

Sc(t) , if Uc(t) > 0

β′eα
′t , else

. (4.55)

Hence, we can compute the conditional expectation of the complete data log-
likelihood function

E[L̃(α, β)|Ŝc] =
T∑

t=1

log
(

P
(
X = Ŝc(t)|X ∼ Poisson(λ(t) = βeαt)

))

. (4.56)
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Ŝc will generally take rational values and is not restricted to integer numbers.
This is similar to our problem with the estimated sales corresponding to a
certain choice-set, equation (4.43). As in the previous case (4.45), we will
work with the log-concave combination of the Poisson probabilities of the
closest lower and upper integer realization for all t = 1, . . . , T by

P (Ŝc(t)|λ(t)) = P
(⌈

Ŝc(t)
⌉

|λc(t)
)γc,t

P
(⌊

Ŝc(t)
⌋

|λc(t)
)1−γc,t

, (4.57)

with γc,t denoting the decimal place of Ŝc(t). Our conditional log-likelihood
function (4.56) is equivalent to the log-likelihood function (4.47) and by Propo-
sition 4.3 also unimodal. Since Ŝc(t) is defined for all t = 1, . . . , T , we can
straight forward compute the unique minimizer of the negative log-likelihood
function, i.e., equivalent to the maximizer of the log-likelihood function. Fur-
ther, since the conditional expectation of the log-likelihood function is clearly
continuous in (α, β) and (α′, β′), the EM algorithm will converge monotoni-
cally to some value L̃(α∗, β∗) for some stationary point (α∗, β∗). This follows
directly from Theorem 3.2 in McLachlan and Krishnan (1997), and is based on
the main convergence theorem of the generalized EM (GEM) algorithm given
by Wu (1983).

It remains to show that the point (α∗, β∗) is indeed a minimizer of the negative
of the log-likelihood function (4.47). Let us define two functions

A(V , S, α, β) =
∑

t∈V

(
S(t)− βeαt

)
(4.58)

B(V , S, α, β) =
∑

t∈V

(
tS(t)− tβeαt

)
. (4.59)

Per definition of Ŝc, we have

A(T̄c, Ŝ
(i−1)
c , αi−1, βi−1) = 0 and B(T̄c, Ŝ

(i−1)
c , αi−1, βi−1) = 0. (4.60)

From the proof of Proposition 4.2 we obtain for (αi, βi) that

A(Tc ∪ T̄c, Ŝ
(i−1)
c , αi, βi) = 0 and B(Tc ∪ T̄c, Ŝ

(i−1)
c , αi, βi) = 0. (4.61)

This implies in case of convergence, i.e. (αi, βi) = (αi−1, βi−1) = (α∗, β∗) ,
that

A(T , Ŝ(i−1)
c , α∗, β∗) = 0 and B(T , Ŝ(i−1)

c , α∗, β∗) = 0. (4.62)
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Thus, ∇−Lc(α
∗, β∗) = 0 and we know that the negative log-likelihood function

is unimodal. As shown in the proof of Proposition 4.3, the Hessian of the
negative log-likelihood function is positive definite at all roots of the gradient.
This implies that (α∗, β∗) can not be a saddle point of the negative of the
log-likelihood function (4.47) and is indeed a minimizer.

The pseudo code of the advanced EM algorithm, for the choice-set demand
rate estimation, is stated in Section 4.4.

Theorem 4.1. All limit points of any instance (α
(i)
c , β

(i)
c , i = 1, 2, . . . ) of the

choice-set EM-Algorithm are stationary points of the corresponding incomplete
date log-likelihood and converge monotonically to some value L(α∗

c , β
∗
c ) for

some stationary point (α∗
c , β

∗
c ).

Proof. The results follow directly from Theorem 3.2 in McLachlan and Kr-
ishnan (1997), which itself is based on the main convergence theorem of the
generalized EM (GEM) algorithm given by Wu (1983). Theorem 3.2 only asks

to ensure that the conditional expectation Q(αc, βc|α
(i−1)
c , β

(i−1)
c ) in the E-step

(4.41) is continuous in both (αc, βc) and (α
(i−1)
c , β

(i−1)
c ), for all iterations i. Si

c

in (4.43) is clearly continuous in (α
(i−1)
c , β

(i−1)
c ). Also the log-concave combina-

tion of both integer realizations of Si
c given by P (

⌈
Si
c(t)
⌉
)γc,t,i ·P (

⌊
Si
c(t)
⌋
)1−γc,t,i

in (4.45) is obviously continuous in λi−1 and so in (α
(i−1)
c , β

(i−1)
c ). Further, it

is straightforward to see that the expected log-likelihood (4.47) is continuous
in (αc, βc). Also the conditional expected log-likelihood function (4.56) within
the inner EM algorithm (Algorithm 4.1) is continuous in the old and new pa-
rameter. Hence, the conditions of Theorem 3.2 in McLachlan and Krishnan
(1997) are satisfied and that proofs the theorem.

The stationary point (α∗
c , β

∗
c ), is not guaranteed to be a global or even lo-

cal maximum. McLachlan and Krishnan (1997) show in section 3.6 examples
where the algorithm converges to saddle points or even to a local minimum.
However, the EM algorithm is known to be very robust and was successfully
applied in many incomplete data problems. Besides, as pointed out by Vul-
cano et al. (2011), the drawback that the EM algorithm does not guarantee a
convergence to a global maximum is shared with any other standard non-linear
optimization method for MLE on incomplete data. Wu (1983) mentions that
the convergence of the log-likelihood values L(i)(αc, βc) does not automatically

also imply a convergence of (α
(i)
c , β

(i)
c ). We check the numerical convergence



4.2. Incomplete Data Knowledge 69

of the parameter points within the M-step and observed in our experiments

that the sequence of parameters (α
(i)
c , β

(i)
c ) converged in almost all cases.

The maximization, i.e., minimization of the negative log-likelihood function, in
the M-step of the EM algorithm reduces now to finding the root of function f ,
as defined in (4.50). An example of function f for sales values S = (4, 5, 1, 2, 1),
for t = 1, . . . , 5, is shown in Figure 4.2. We suggest an application of New-
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Figure 4.2. Example plot of function (4.50).

ton’s method, also called Newton-Raphson method, for finding the root of the
function. The α formulation of f and its derivatives are given by

f(α) =

T−1∑

t=0

(
eαt − eαT

1− eαT

)

−
Σ2

Σ1
(4.63)

f ′(α) =
T−1∑

t=0

teαt + (T − t)eα(t+T ) − T eαT

(1− eαT )2
(4.64)

f ′′(α) =
T−1∑

t=0

(
(
t2eα(t−1) + (T 2 − t2)eα(t+T−1) − T 2eα(T−1)

)
(1− eαT )2

(1− eαT )4

−

(
2T eα(2T−1) − 2T eα(T−1)

)(
teαt + (T − t)eα(t+T ) − T eαT

)

(1− eαT )4

)

(4.65)

The Newton-step, calculating the (n+ 1)th approximation for the root of f is
given by

αn+1 = αn −
f(αn)

f ′(αn)
. (4.66)
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The iteration stops when f(αn) is sufficient close to zero or when we reach a
maximum iteration limit.

As outlined in Press et al. (2007) and Deuflhard and Hohmann (2002), the big
advantage of Newton’s method is the rate of convergence in a neighborhood
of the root. Suppose α̂ is the root of f , then the Taylor expansion of f(α̂) at
αn = α̂− ǫn for some distance ǫn is

0 = f(α̂) = f(αn) + ǫnf
′(αn) + ǫ2n

f ′′(ᾱ)

2!
︸ ︷︷ ︸

=R1

, (4.67)

where R1 represents the Lagrange form of the expansion remainder with ᾱ
being between α̂ and αn. We divide the expression by f ′(αn) and obtain

f(αn)

f ′(αn)
+ ǫn
︸︷︷︸

=α̂−αn

= −ǫ2n
f ′′(ᾱ)

2f ′(αn
. (4.68)

Remembering the Newton step (4.66), we can replace αn on the left hand side
of the equation

α− αn+1
︸ ︷︷ ︸

=ǫn+1

= −ǫ2n
f ′′(ᾱ)

2f ′(αn
. (4.69)

Taking the absolute values, we obtain

|ǫn+1| =
|f ′′(ᾱ))|

2|f ′(α̂n)|
ǫ2n. (4.70)

So, we have a quadratic convergence of the Newton method within an interval
U = [α̂− ǫ0, α̂+ ǫ0] for which holds

1. f ′(α) 6= 0 for all α ∈ U

2. f ′′(α) < ∞ for all α ∈ U

3. the start value α0 is sufficiently close to α̂.

We can rewrite (4.70) into

|ǫn+1| ≤

(
maxα∈U f ′′(α)

minα∈U 2f ′(α)

)

︸ ︷︷ ︸

=K

ǫ2n. (4.71)
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Defining δn = Kǫn and by the last inequality we observe

δn+1 ≤ KKǫ2n = δ2n ⇒ δn ≤ δ2n0 = (Kǫ0)
2n. (4.72)

This leads us to a reformulation of condition 3: to require K|ǫ0| < 1. Conse-
quently, our sequence {δn} is a zero-sequence fulfilling all inequalities above.
Let us visualize this convergence interval for our example, shown in Figure
4.2. The root of f is attained at α̂ = −0.3658 and let us define the following
function

δ(α) =
maxξ∈[α̂−|α̂−α|,α̂+|α̂−α|] f

′′(ξ)

minξ∈[α̂−|α̂−α|,α̂+|α̂−α|] 2f ′(ξ)
|α̂− α|. (4.73)

The δ function for our example is shown in Figure 4.3. The convergence
interval for the example is U = [−0.9, 0.16], which is relatively large.
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Figure 4.3. δ function corresponding to the function shown in Figure 4.2.

For starting values outside the interval U , the convergence rate can be con-
siderably lower, and the convergence itself is not guaranteed. Therefore, the
Newton method is only recommended if the neighborhood of the root is known
with some certainty. For other cases, when the approximated position of
the root is completely unknown, we recommend the bisection method. The
method converges only linearly, but is guaranteed to converge to the root of
the underlying function f , if f is continuous on an interval [a, b] and f(a), f(b)
have opposite signs. In the proof of Proposition 4.2, we have already shown
that our function f (4.50) fulfills limα→−∞ f(α) < 0 and limα→∞ f(α) > 0.
Further, f is continuous on it’s domain. It remains to choose the initial values
a and b, such that the respective function values are negative and positive.
The algorithm is very intuitive and takes the following steps:
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1. set a = a0 and b = b0,

2. test if interval [a, b] contains a root
(
f(a) < 0 and f(b) > 0

)
, if yes

continue,

3. test if b − a < ǫ, if yes stop and return as approximation of the root
either a or b,

4. divide [a, b] into two equal sized intervals [a, a+ b−a
2 ] and [a+ b−a

2 , b] and
go to step 2 with each interval,

where ǫ defines the stopping criteria of the algorithms.

4.3 Summary

In this chapter, we analyzed the choice-set unconstraining problem. We started
with the complete data knowledge problem and later extending the obtained
property results to the incomplete data knowledge situation. We find that the
minimization of the negative log-likelihood function can be replaced by the
problem of finding the unique root of a certain function. The resulting EM
algorithm is displayed in pseudo code in the following section. The new pro-
posed advanced choice-set unconstraining algorithm overcomes the rounding
problem of the algorithm proposed in Chapter 2. Further, the new algorithm
does not require any advanced mathematical programming software, since it is
only based on Newton’s method or the Bisection method. Hence, the new al-
gorithm can be straightforward coded in any common programming language
and is therefore easily implementable into any RM system.
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4.4 Algorithm

Pseudo code of the Advanced Choice-set Estimation Algorithm:
Initialization: with estimates (α̂c, β̂c) for all choice-sets c with |Tc| < T

For all c ∈ C
For all t = 1, . . . , T

S
(0)
c (t) =

{

S(t, U(c, t)) , if U(c, t) > 0

β̂c exp(α̂ct) , if U(c, t) = 0

end for

If |Tc| ≥ 2: Run Algorithm 4.1 to compute α
(i)
c and β

(i)
c

If |Tc| = 1: α
(i)
c = 0 and β

(i)
c = S0

c

λ
(0)
c (t) = β

(0)
c exp(α

(0)
c t)

end for

Iteration Loop i = 1, ...

Expectation-step:
For all c ∈ C

For all t = 1, ..., T

Si
c(t) =







λ
(i−1)
c (t)

λ
(i−1)
overlap

(c,t)
S(t, U(c, t)) , if U(c, t) > 0

β
(i−1)
c exp(α

(i−1)
c t) , if U(c, t) = 0

γc,t,i = Si
c(t)−

⌊
Si
c(t)
⌋

P
(
Si
c(t)|λc(t)

)
=







e−λc(t)λc(t)S
i
c(t)

(⌈Sc(t)⌉!)
γc,t,i (⌊Sc(t)⌋!)

1−γc,t,i
, if U(c, t) > 0

1 , if U(c, t) = 0

end for

Σ1 =
∑T

t=1 S
i
c(t) and Σ2 =

∑T
t=1 tS

i
c(t)

L
(i)
c (αc, βc) =

∑T
t=1 logP

(
Si
c(t)|λc(t)

)

end for

Maximization-step:
For all c ∈ C

If |Tc| ≥ 2: Run Algorithm 4.1 to compute α
(i)
c and β

(i)
c

If |Tc| = 1: α
(i)
c = 0 and β

(i)
c = Si

c

λ
(i)
c (t) = β

(i)
c exp(α

(i)
c t)

end for

Until Stopping criteria reached.
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The stopping criteria could be either a maximum number of iterations or some

kind of numerical convergence bound on changes in L
(i)
c between iterations, as

well as on changes in α
(i)
c and β

(i)
c . The demand rate function for each choice-

set c at time t is estimated as long as at least one class contained in c is offered
at t. A no sale observation at t is regarded as a realization of the stochastic
arrival process with no arrivals from all choice-sets which intersect with the
set of offered classes at time t. The estimation is extrapolated over periods
when no class contained in choice-set c is offered, i.e. no customer arrivals
corresponding to c are observable. Notice that the EM method is independent
of the demand rate function form. The exponential curve is a result from our
data analysis of the airline and hotel data sets. Only the unimodality of the
negative log-likelihood function needs to be checked for different demand func-
tions, it can be easily shown that it also holds for constant or linear demand
functions. Also the straight forward computation of the minimizers, as given
in Proposition 4.2, needs to be adjusted for other demand functions.



Chapter 5

Comparison of Discrete Choice Models

on a Hotel Market

In this chapter, we present a comparison study of different choice models from
the literature and an extension of our choice-set model.

With the exception of Farias et al. (2012) and van Ryzin and Vulcano (2011),
who propose a non-parametric choice model with preference lists similar to
our choice-set model, most choice based models in RM use the multinomial
logit model (MNL). The MNL model is a well known and widely used choice
model in practice. But when we take a look into the choice modeling research,
we find that the MNL is in general only used as a reference model for more
advanced choice models. So, clearly there is a need for a comparison study of
different choice models in a RM context. The focus of this paper is to pro-
vide such a comparison of different choice models from the literature, plus an
extension of the choice-set demand model. The choice-set model is extended
with the MNL to model a two level choice process, which allows to incorporate
multiple alternative characteristics as well as a consideration of many choice
alternatives. The first level of the choice process is modeled by the choice-set
idea on groups / classes of alternatives. The choice among alternatives within
the chosen group is modeled by the MNL model.

The comparison is performed on a real hotel dataset consisting of reservations
of multiple hotels located in a larger city in the nations of the Benelux (Bel-
gium, Netherlands and Luxembourg). For a specific study on hotel RM, we
refer to Vinod (2004), who provides a description of steps and challenges of
a hotel RM system. The choice models are estimated and compared on real
reservations made in the hotel market. We only work with reservation trans-
action data and not individual customer information for two reasons: first, the
data availability, and second, the usability of information. The information
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of historical product availability and the amount of sales per time periods is
already available and easy to extract from corporate databases. Companies do
not store many individual characteristics of customers, and usually not more
than name, gender, address and payment details. Further, even with potential
detailed information on the choice behavior based on individual characteris-
tics, the question of the usability remains. In the RM setting and even more in
the time of e-commerce, the seller does not know who is requesting a product.
For example, from a flight request on an airline website for a certain flight
from Amsterdam to New York we learn nothing about the flight purpose, e.g.,
whether it’s business or leisure, nor anything else about the customer.

The chapter continues with an introduction of the dataset, followed by the de-
scription of the different choice models in Section 5.2. The results are reported
in Section 5.3 and the final Section 5.4 presents our conclusions.

5.1 Available Dataset

We are able to perform our analysis on real market data, provided by Bookit
B.V., a European short break specialist for hotels and holiday parks with a
market leading position in the Netherlands. The chosen location for our test
case is an economical, cultural and historical important city in the nations of
the Benelux (Belgium, Netherlands and Luxembourg). The town has a popu-
lation of approximately 500,000 people. Bookit holds data of 31 hotels for the
given location on its website, but 98% of all reservations are made from our
chosen subset of 22 hotels. The considered hotel product is a two-night hotel
stay with arrival on Friday afternoon, a pure leisure product. The dataset
contains all hotel offers available to the online visitors who made a reservation
at one of our selected hotels. The dataset is incomplete in the sense that we
have no data on offered alternatives for visitors who make no transaction. This
data incompleteness is very common in company databases, since it is often
impossible to collect and store data for all visiting customers. Nevertheless,
having data of all alternatives offered to a reserving customer enables us to
estimate the underlying decision process. The dataset covers a period of 2
years, resulting in 104 different instances of our hotel product. We considered
a booking horizon of 56 days/ 8 weeks. The individual hotel offers are dis-
tinguished by: the hotel, the distance between booking and arrival day, the
hotel standard measured by the five star rating system, the hotel distance to
the city center and the price. The set of hotels consists of 13 3-star hotels, 8
4-star hotels and 1 5-star hotel.
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Figure 5.1 shows the aggregated reservations per month and separated per
hotel stars. We observe three large peaks in the first year for February, August
and November. The second year is less volatile with three peaks in Jan-
Feb, July and October. These peaks correspond to the main holiday seasons:
winter, summer and autumn. The average offer prices per year, month and
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Figure 5.1. Total reservations per month and hotel stars.

star category are shown in Figure 5.2. The jump for the 5-star offers in April
year 2 is very obvious. In the first 15 months the average 5-star price is 170,
which is increased to 280 for the last 9 month (Apr-Dec year 2). It might be
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Figure 5.2. Averaged offer prices per month and hotel stars.
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surprising that the 5-star hotels offers rooms for prices less than the averaged
4-star price. But since Bookit is only one sales channel, the prices are only
representative for the offers at Bookit’s websites and not for all reservations
made at a specific hotel. Despite this fact, the Bookit data provides a clear
view of the online hotel market with numerous competitive hotel offers and
very high sales volumes. The 5-star sales volume in Figure 5.1 indicate that
the 5-star hotel uses Bookit not as the major sales channel. We further observe
that the 3-star hotels slightly increase and the 4-star hotels slightly decrease
their prices between both years. It is interesting to observe also that the
first year prices for January and February are very low for all categories.
For the remainder we will divide our 2 year spanning dataset in four smaller
sets, namely year 1 and 2 separately, and also the summer period July and
August separately, for both years. Figure 5.3 shows the booking curves for
all four datasets. The 56th day denotes the beginning of the booking horizon
and booking day 1 the day of arrival at the hotel. For comparability of the
booking speed and buildup we show the booking curves in percentages of the
total received reservations. We observe that most of the bookings are made
close to the hotel arrival day of the product. The averaged price developments
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Figure 5.3. Booking curves in percent of total reservations per hotel stars.

of the offers during the booking horizon are displayed in Figure 5.4. Price
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changes are shown in percentages to the averaged offered price (level = 100).
Interesting to observe is to compare the pricing policy of the 5-star hotel for
both years. In year one, the 5-star hotel decreased the price to the end of
the booking horizon, contrary to the behavior of the 3 or 4-star hotels. In
the second year, we observe an adaptation of the general market practice to
increase the prices towards the arrival day at the hotel.

5650433629221581
90

95

100

105

110
Year 1 All Month

 

 

5650433629221581
90

95

100

105

110
Year 2 All Month

 

 

5650433629221581
85

90

95

100

105

110
Aug & July Year 1

 

 

5650433629221581
90

95

100

105

110
Aug & July Year 2

 

 

3−star 4−star 5−star all

Figure 5.4. Price development within the booking horizon in percentages of the
average price per hotel stars.

In the last part of our data analysis, we investigate the frequency of prices
per star category over all offers and made reservations. The corresponding
histograms for year 1 and 2 are displayed in Figures 5.5 and 5.6. We observe
that the distributions of offer and reservations prices are not equal; we find
proportionally more lower priced reservations. This higher attractiveness of
low price offers for the same hotel stars clearly shows the price elasticity. We
also observe that the disproportion is stronger for the 3-star products than
for the 5-star products, which is in line with marketing knowledge that one
observes a smaller price sensitivity for higher priced products.
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Figure 5.5. Histograms of price offers and choices for year 1.
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Figure 5.6. Histograms of price offers and choices for year 2.
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5.2 Choice Models

In the current section we list and describe the most common discrete choice
models. In every purchase decision, the individual is faced with multiple alter-
native offers, each having different properties. The individual has to chose one
of the offered alternatives or make a non-purchase decision. Let us introduce
the following notation: J denotes the set of alternatives (J = |J |), m denotes
number of explanatory variables, xj ∈ R

m represents the explanatory variables
of alternative j ∈ J and β ∈ R

m represent the choice model parameter.

5.2.1 Multinomial Logit (MNL) Model

We start with the best known and most studied choice model, the multino-
mial logit model. The choice process is modeled as follows: n individuals,
each confronted with a set of alternatives (not necessarily the same for all
individuals), are supposed to choose one of these alternatives. The choice of
individual i is denoted by yi. Each individual is supposed to make a choice
purely based on utility maximization. In other words, each offer characterized
by its explanatory variables comprises a certain utility for the individual. The
utility of alternative j for individual i is computed by a linear function

Ui,j = β⊤xj + ǫi,j , (5.1)

where ǫi,j is an i.i.d. extreme value random variable with zero mean, represent-
ing the unobservable decision factors and noise. Since the disturbance term
is i.i.d and has mean zero, we will further suppose that the general utility of
alternative j for any individual can be calculated by

Uj = β⊤xj . (5.2)

Choosing none out of the offered alternatives is equalized with a utility of zero.
The probability that individual i chooses alternative j is computed by

P (yi = j) =
exp(Uj)

1 +
∑

k∈Ji
exp(Uk)

, (5.3)

where Ji denotes the set of alternatives which are presented to individual i
and P (yi = j) = 0 if alternative j is not contained in Ji. In our dataset we can
not observe non-purchase decisions, therefore equation 5.3 can be simplified
into

P (yi = j) =
exp(Uj)

∑

k∈Ji
exp(Uk)

. (5.4)
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To avoid numerical computation problems with very large or very small exp(U)
values, we reformulate (5.4) to work with the utility differences from the chosen
alternative

P (yi = j) =
1

∑

k∈Ji
exp(Uk − Uj)

=
1

1 +
∑

k∈Ji,k 6=j exp(Uk − Uj)
. (5.5)

The parameter estimations is done by maximum likelihood estimation (MLE)
on the log-likelihood function

log(L) =
n∑

i=1

log (P (yi)) . (5.6)

5.2.2 Latent Class MNL Model (LCM)

A detailed introduction on general Latent Class (LC) models is given by Ver-
munt (2010). The LC model assumes that the individuals in the choice ex-
periment are not identical and that they can be grouped into C classes. The
membership of the individual to a certain class is unknown. Thus, we de-
fine the latent variable vi of individual i as the possible class membership.
P (vi = c) denotes the probability that individual i belongs to class c. Con-
trary to the MNL model the parameter vector β on the explanatory variables
in the utility function is not unique for all individuals in the population, but
for all individuals in a certain group. Therefore, the utility of alternative j for
all individuals i in class c is given by

Uc,j = β⊤
c xj . (5.7)

Hence, the choice probability for individual i is expressed by

P (yi = j|vi = c) =
exp(Uc,j)

∑

k∈Ji
exp(Uc,k)

,

=
1

∑

k∈Ji
exp(Uc,k − Uc,j)

. (5.8)

The general choice probability, without the exact class information, is defined
by the a priori membership probabilities

P (yi = j) =
C∑

c=1

P (vi = c)P (yi = j|vi = c). (5.9)
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The parameter estimations is, similar to the MNL model, done by MLE. The
log-likelihood function is

log(L) =

n∑

i=1

log (P (yi)) =

n∑

i=1

log

(
C∑

c=1

P (vi = c)P (yi|vi = c)

)

, (5.10)

where yi denotes the observed choice of individual i. The estimation problem
contains C parameter vectors βc and C latent class parameter pc = pi,c =

P (vi = c) with
∑C

c=1 pc = 1. Since the analyst is assumed to be unable to
distinguish between individuals, the class membership probabilities are equal
over the whole population. An important prior problem to the estimation itself
is the choice of C, the number of classes. As explained in Greene and Hensher
(2003), the choice of C is very important. If the chosen C is larger than the
“true” C∗, it is possible to test down to C∗. The reverse is not possible since
estimates for C < C∗ are inconsistent.

5.2.3 Mix Logit Model (MLM)

For a fundamental discussion of the MLM, we refer to McFadden and Train
(2000). They show under the assumption of mild regularity conditions that
the choice probabilities of any discrete choice model, which is derived from a
random utility maximization model, can be arbitrarily close approximated by
a MLM model. Further, they describe a Maximum Simulated Likelihood and
a Simulated Moments method to estimate MLM models. A brief discussion of
the MLM is also found in Greene and Hensher (2003).
As in the LCM methodology, the MLM models assumes that the individual
are not identical. The parameter vector β is assumed to be continuously
distributed on the population of all individuals i

βi = β + Λζ. (5.11)

with β ∈ R
m denoting the mean parameter coefficients, Λ ∈ R

m×r factor
loadings and ζ ∈ R

r the random vector of independently but not necessarily
identical distributed factor levels with density f(ζ). The choice probability of
alternative j for individual i is given by

P (yi = j) =

∫

gi(j|β + Λζ)f(ζ|Λ) dζ, (5.12)
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where gi(j|β) represents the logit function

gi(j|β) =
exp(β⊤xj)

∑

k∈Ji
exp(β⊤xk)

,

=
1

∑

k∈Ji
exp

(
β⊤(xk − xj)

) . (5.13)

The integral in (5.12) is generally intractable and so the usual parameter esti-
mation approach based on maximum likelihood is not feasible. But, by means
of simulation it is possible to compute a simulated log-likelihood function Ls

log(Ls) =
n∑

i=1

log (Ps(yi)) . (5.14)

The simulated choice probabilities are computed by S independent draws of
ζs from f(ζ) by

Ps(yi = j) =
1

S

S∑

s=1

gi(j|β + Λζs). (5.15)

Train (2003), chapters 6 and 10, describes in brief the Maximum Simulated
Likelihood Estimation (MSLE) method and its properties. MSLE is consis-
tent, efficient and asymptotically equivalent to MLE. We will use the Matlab
package Train (2006) for the MSLE parameter estimation.

5.2.4 Nested Logit Model (NLM)

For a detailed introduction to the NLM, we refer to Train (2003) chapter
4. An interesting and widely discussed property of the MNL model is the
independence from irrelevant alternative (IIA), which states that the ratio
between the choice probabilities of two alternatives is independent of other
alternatives. This property is often seen as a drawback of the MNL model.
The most popular example is the “red bus / blue bus paradoxon”: Choice of
transport mode, the alternatives are car or bus-both with the same travel time.
The utility is supposed to be a function of the travel time. Since the travel
time for both modes are equal, the choice probabilities for car and bus are
both 1

2 . The introduction of a second bus with the same travel time only with
a different color, will result in a choice probability of 1

3 for each alternative.
One would expect that the introduction of a second bus will not change the
probability of choosing the car as the transport mode and that the choice
probability between both bus alternatives are equal.
This drawback is overcome by the nested logit model (NLM), which is used
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when the set of alternatives can be divided into non-overlapping subsets, the
nests, such that the following two properties are satisfied:

1. The IIA holds for all alternatives within a nest.

2. The IIA does generally not hold for alternatives between different nests.

Let us further suppose that the set of alternatives is divided into K disjoint
nests B1, . . . , BK . The utility of alternative j for individual i is given by

Ui,j = β⊤xj + ǫi,j , (5.16)

where ǫi = {ǫi,1, . . . , ǫi,J} is a random variable, following a multivariate gen-
eralized extreme value (GEV) distribution with cdf

f(ǫi) = exp



−
K∑

k=1

( ∑

j∈Bk

exp(
−ǫi,j
λk

)
)λk



 . (5.17)

λk represents the measure for the independence among alternatives in nest
k, i.e., high values indicate a high independence and thus smaller correlation
among the alternatives in the nest. Therefore 1−λk can be used as an indicator
for correlation. Any two alternatives from different nests are supposed to be
uncorrelated, Cov(ǫi,j , ǫi,l) = 0 for all j ∈ Br and l ∈ Bs with r 6= s. In the
case of λk = 1 for all nests k, ǫi is the product of J independent univariate
extreme value distributed random variables and thus reduces the NLM to the
MNL model. (See Figure 5.7 for an illustration of the MNL versus the NLM.)
The probability that individual i choses alternative j ∈ Bk is given by

P (yi = j) =
exp(

β⊤xj

λk
)
(
∑

l∈Bk
exp(β

⊤xl

λk
)
)λk−1

∑K
r=1

(
∑

m∈Br
exp(β

⊤xm

λr
)
)λr

. (5.18)

An alternative way of expressing the choice probability is to write it as a
product of a conditional and a marginal probability

P (yi = j) = P (yi = j|yi ∈ Bk) · P (yi ∈ Bk), (5.19)
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Figure 5.7. Red bus/ blue bus paradoxon, without captured correlations (MNL)
and with captured correlation (Nested Logit).

with

P (yi ∈ Bk) =
exp

(

β⊤
1 zk + λkIi,k

)

∑K
l=1 exp

(

β⊤
1 zl + λlIi,l

) ,

=
1

∑K
l=1 exp

(

β⊤
1 (zl − zk) + λlIi,l − λlIi,l

) , (5.20)

P (yi = j|yi ∈ Bk) =
exp

(
β⊤

2 xj

λk

)

∑

l∈Bk
exp

(
β⊤

2 xl

λk

) ,

=
1

∑

l∈Bk
exp

(
β⊤

2 (xl−xj)
λk

) , (5.21)

Ii,k = log
∑

l∈Bk

exp
(β⊤

2 xl
λk

)

, (5.22)

where zk denotes the explanatory variables of attributes of nest k, β1 its re-
spective parameter vector, xj represents the explanatory variable of attributes
of alternative j and β2 the corresponding parameter vector. Thus we are now
faced with a two level logit model: The first level models the choice of the nest
and the second level models the choice among alternatives in the chosen nest.
Ii,k links both choice levels and the product λkIi,k can be interpreted as the
expected utility of individual i from choosing among the alternatives in nest
k.
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The parameter estimation is commonly done by MLE, with the choice proba-
bilities (5.18) we obtain the log-likelihood

log(L) =
n∑

i=1

log
(

P (yi)
)

, (5.23)

which is in general not concave. Because of the leveled choice structure it is
possible to sequentially estimate the model parameter; first the choice of nests
and afterwards the choices within the nests. Train (2003) argues against this
sequential estimation and recommends only to use the sequential technique to
generate starting values as input for the simultaneous parameter estimation.

5.2.5 Choice-set & MNL Combination Model (CSM)

The CSM model divides the choice process into two levels:

1. a choice-set based process which focuses on the choice between groups/
classes of alternatives distinguished by some main characteristics

2. an MNL model which describes the exact choice among alternatives in
the chosen group based on minor and possibly group specific character-
istics

The concept of discrete choice-sets dates back to Ben-Akiva and Lerman
(1985). As Train (2003) states, choice-sets are sets of alternatives, similar
to J , with three characteristics. First, the alternatives are mutually exclu-
sive, i.e., choosing one strictly implies not choosing any other. Second, the
choice-set is exhaustive, i.e., all possible choice decisions are included. Third,
the choice-set has finite cardinality. In Chapter 2 we extend the above choice-
set definition by forcing a strict preference order among alternatives within
the choice-set and we defined choice-sets per customer types. Further, indi-
viduals are only distinguished by their choice-set. So if the choice-sets of two
persons coincide, i.e., both are interested in the same set of products and have
the same preference order, both person are not distinguished. This is in line
with the situation at most companies. Usually companies do not have many
detailed information of customers prior to their transaction, some data can
be collected after the sale is made. But when deciding on the offer-set, i.e.,
which products to make available for sales, or which price to ask, normally
no detailed information on individual customers is known. This model of an
individual’s choice process based on a set of alternatives of interest with a
strict preference order, can be assumed to approximate the real choice process
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very well. In Chapter 3, we tested the choice-set demand unconstraining al-
gorithm on a real airline reservation dataset. The results fit the actual sales
data very well with only a slight overestimation and are therefore absolutely
promising. Problem arise when the choice-set definition, i.e., definition of pos-
sible customer types, is not as straight forward as in the airline case with its
12 fare classes. Namely, when we have many alternatives with multiple differ-
ent attributes. One clearly observes that the number of possible choice-sets
grows exponentially in the number of possible choice alternatives. Our ex-
tended choice-set approach is to group alternatives with similar major choice
attributes into groups or classes and model the choice among this classes with
the choice-set model. The choice within the chosen class is further modeled
with a different choice model, in our case the MNL, with a possible consid-
eration of additional alternative attributes. The idea is to use choice-sets to
divide customers into major behavior groups and estimate or forecast demand
rates at this upper group level. The choice process within product classes may
involve many attributes with each having similar impact in the decision. The
MNL is, as described before, a standard model for this kind of choice processes
with many explanatory variables.

The estimation of the choice-set model is divided into two steps: First, the
identification of different choice-sets, and second, the demand estimation per
choice-set. The identification of possible choice-sets is performed with the ex-
pert knowledge of marketing and sales persons in the specific business area.
The demand rates per choice-set are estimated by the unconstraining EM algo-
rithm developed in Chapter 4. The demand is assumed to follow an inhomoge-
neous Poisson process with an exponential rate function λc(t) = βc ·exp(αc · t),
for choice-sets c and time stage t. The estimation method is applied separately
for each product instance n = 1, . . . , N and we obtain choice-set estimates
λc,n(t) = βc,n · exp(αc,n · t). Remember in our case that product instances are
the different arrival days of our hotel product, each having a booking horizon
of 8 weeks. For a fair comparison with the other choice models, we need to
find general parameter α̂c and β̂c over the set of all instances. This is done by
a separate MLE estimation

(α̂c, β̂c) = arg minα,β>0 − Lc, (5.24)

Lc =

N∑

n=1

tT∑

t=t1

logP
[

X = λc,n(t)|X ∼ Poisson
(

λc(t)
)]

. (5.25)
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The probability that individual i chooses class or group f at day d in time
stage t is computed by

P (yi ∈ f) =

∑

c∈C λc(t) · IU(c,Jt(d))=f
∑

c∈C λc(t) · IU(c,Jt(d))>0
. (5.26)

Remember that C denotes the set of all choice-sets, I the indicator function
and function U returns the chosen product of choice-set c under offer-set J
or zero. To determine the probability of choosing hotel j in chosen class f ,
we apply the MNL model restricted to the available alternatives belonging to
class f . We use the formula (5.1) with the optimal MNL choice parameter
to compute the utility Uj of alternative j. The probability that individual i
chooses hotel j is then given by

P (yi = j) =
∑

f∈F

P (yi ∈ f) · Ij∈f ·
exp(Uj)

∑

k∈f,k∈Ji
exp(Uk)

,

=
∑

f∈F

P (yi ∈ f) · Ij∈f ·
1

∑

k∈f,k∈Ji
exp(Uk − Uj)

, (5.27)

where F denotes the set of classes and Ji the set of alternatives offered to
individual i. The parameter of the MNL model used in the second choice phase
are estimated according to Section 5.2.1 over all alternatives j and their set of
explanatory variables. The MNL choice parameter can be specific estimated
per product class or general used for all groups. Class specific MNL parameter
have the advantage to take account for different preference factors between
different groups, e.g., the presence of a Champagne bar may be differently
evaluated for 3-star or 5-star hotels. On the other hand, more parameters
increase the estimation problem and its complexity.

5.3 Numerical Results

In the numerical results section, we estimate the choice models described in
the preceding section. As input data, we use the reservation dataset provided
by Bookit B.V., as introduced in Section 5.1. The entire dataset spans over
a period of two years and is split into four smaller datasets to compare the
estimation results of the choice models at different time periods. The datasets
are the complete first and second year, as well as the two summer periods
respectively for both years. The estimation software is coded and solved in
MATLAB R2011b.
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We divided the prices in the dataset by 50 to scale them to a similar level as
the hotel stars or the geo-distance to the city center in kilometer. The max-
imum likelihood estimation for the MNL, LCM and NLM choice models is
implemented by applying the MATLAB fmincon function on the negative log-
likelihood function. Initial starting values are obtained by an upfront solved
genetic algorithm, i.e., MATLAB ga function. We estimated the LCM with
two numbers of latent classes C = 2 and 4. For the NLM, we also test two ver-
sions, the first, denoted NLM 1, with the nests representing distance groups
([0km, 1.5km), [1.5km, 2.5km) and [2.5km, 10km]) and the second, denoted
NLM 2, representing star groups (3 stars, 4 stars and 5 stars). The MLM
model is estimated by the MATLAB code provided by Train (2006). The
distribution for the coefficients of the negative scaled price, the hotel stars
and the negative geo-distance to the city center are set to log-normal and the
coefficients for the booking day and the hotel alternatives are supposed to be
normal distributed. Low prices, high stars and small geo-distances are consid-
ered to have a positive impact in the choice utility and therefore the coefficients
are restricted to being positive by assuming a log-normal distribution. We es-
timate two version of the MLM, in the first the hotel-alternative coefficients
are constant and only the coefficients for price, stars, geo-distance and book-
ing day are random, the model is abbreviated with MLM F4Rnd. The second
MLM version is denoted with MLM AllRnd and here we set all coefficients, in-
cluding the hotel alternatives, to be random. Turning now to the CSM model,
the first question is how to define the product classes for the choice-set model.
From discussions with sales and marketing persons at Bookit, we learned that
the price is the strongest separator for customer groups. Therefore, the prod-
uct classes in our CSM model are defined by the hotel prices. We separate
the offers into 4 price classes, which are chosen such that the price class (pc)
cardinalities, number of corresponding sales realizations, are as equal as pos-
sible subject to some minimum price spread constraint of EUR 25. The price
classes per dataset are shown in Table 5.1. The price class results show that
customers become more price sensitive over both years. As shown in Figure

pc1 pc2 pc3 pc4

Year 1 [70,118] (118,149] (149,193] (193,300]
Aug & July Year 1 [70,101] (101,138] (138,169] (169,300]
Year 2 [70,103] (103,130] (130,168] (168,300]
Aug & July Year 2 [70,103] (103,128] (128,158] (158,300]

Table 5.1. Price class definitions per dataset.
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5.2, the price offers are not greatly reduced in year two but the reservations
shift towards the lower prices. As choice-sets, we consider all combinations of
coherent price classes

C =
{
{pc1}, {pc2}, {pc3}, {pc4},

{pc1, pc2}, {pc2, pc3}, {pc3, pc4},

{pc1, pc2, pc3}, {pc2, pc3, pc4},

{pc1, pc2, pc3, pc4}
}
.

Further, two versions of the CSM model are tested: CSM 1 assumes constant
MNL parameter for all price classes and CSM 2 works with class specific
MNL parameter. The choice-set demand parameter are estimated by the Al-
gorithm proposed in Chapter 4 and the stopping criteria is set to maximum
100 iterations or a simultaneous satisfaction of the following three bounds on
value changes: ∆α-tolerance 0.001, ∆β-tolerance 0.01 and a ∆ log-likelihood-
tolerance of 0.1. Figure 5.8 shows an example trajectory of the log-likelihood
development in the choice-set EM algorithm. The algorithm stopped in aver-
age after 30.9 seconds and took 31.2 iterations.

0 5 10 15 20 25 30 35 40
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iterations

Figure 5.8. Example of the negative log-likelihood trajectory in the choice-set EM
algorithm.

Let us now turn to the results of our comparison study. All models are fitted to
the market data and we compare the results in order to evaluate the goodness
of fits. As usual in model fitting, there is no one measure or criterion to base
a strict decision on. Therefore, we focus on different measures and report the
results of the different models. Table 5.2 shows the results of all models with
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their variations estimated on the complete year datasets, i.e., the complete
first and second year. The corresponding results for the summer periods for
both years are displayed in Table 5.4. As an initial goodness-of-fit measures we
present the negative log-likelihood (NegLLH), the Akaike information criterion
(AIC) and the prediction ration (PR) Top1, Top3 and Top5. The AIC, takes
the negative log-likelihood value and punishes for two much parameter in the
model, since a sparser model is due estimation reasons always preferred over
a more complex model with the same fitting quality. We concentrate in the
report on the NegLLH, as a statistical measure of the fit, and on the PR Top1,
for a more practical view to answer ’how often is the choice model right’.

Dataset Choice model NegLLH AIC PR Top1 PR Top3 PR Top5
Year 1 MNL 10097 20246 0.2469 0.5372 0.7115

LCM C=2 10009 20126 0.2555 0.5367 0.7165
LCM C=4 9983 20182 0.2578 0.5488 0.7208
MLM F4Rnd 10046 20152 0.2334 0.4446 0.5984
MLM AllRnd 10022 20148 0.2596 0.5247 0.7104
NLM 1 10083 20224 0.2580 0.5383 0.7156
NLM 2 10114 20286 0.2469 0.5317 0.7115
CSM 1 10488 21068 0.2203 0.4673 0.6874
CSM 2 10336 20920 0.2291 0.4721 0.6974

Year 2 MNL 10434 20920 0.2175 0.5123 0.6801
LCM C=2 10276 20660 0.2514 0.5239 0.6826
LCM C=4 10349 20914 0.2467 0.5283 0.6889
MLM F4Rnd 10372 20804 0.2309 0.5156 0.6931
MLM AllRnd 10273 20650 0.2393 0.5276 0.6898
NLM 1 10446 20950 0.2249 0.5016 0.6777
NLM 2 10404 20866 0.2333 0.5067 0.6766
CSM 1 10753 21598 0.2147 0.4742 0.6410
CSM 2 10560 21368 0.2177 0.4961 0.6608

Table 5.2. Likelihood and prediction ratio results after estimation on the full year
datasets.

The PR TopX represents the success probability over all choice situations

PR =
right predictions

all choice situations
, (5.28)

where a success is given if the chosen hotel is under the hotels with the highest
X choice probabilities computed by the choice model. Thus, PR Top1 is the
success ratio that the choice model predicts the right outcome over the 22
possible hotel alternatives. We find that the PR Top1 ratio is always above
20%; a random chance model would have an expected prediction ratio of only
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4.55%. Let us first concentrate on the full year results in Table 5.2. In both
cases, the more complex models from the literature, the LCM, MLM and NLM,
are best performing. The CSM 2, with specific MNL parameter per price class,
is as expected outperforming the CSM 1, with only one MNL parameter set
for all classes. Also, the difference between the CSM and the other models is
larger for the first year. So the CSM seems to fit the second year data better, in
comparison with the other models. When we compare the demand fluctuation
for both years, see Figure 5.1, we clearly see a higher variation in year 1. The
demand fit in the CS-part is better for the second year dataset, because the
demand is more smooth. The CSM is essentially a demand model with choice
information, whereas the other choice models are pure choice models with
no need of information on the demand. In other words, the CSM needs to
know how much customers of a given type are expected to arrive at a certain
period to generate good prediction results. The other models, do not need
such information and if a customer arrives they compute choice probabilities
of alternatives. So the CSM is more complex, because it combines choice
and demand. But this means, it also provides information on both, the choice
behavior of different customer types and the expected demand rates per types.
The choice-set demand rates are unconstrained per instance, and to ensure a
fair comparison we use general choice-set parameter, see equation (5.24) and
(5.25). Only as a reference, we show the corresponding CSM results obtained
by the individual demand rates per instance, see Table 5.3. Note that we can

Dataset Choice model NegLLH AIC PR Top1 PR Top3 PR Top5
Year 1 CSM 1 9398 18888 0.3210 0.5863 0.7440

CSM 2 9247 18742 0.3322 0.6000 0.7579
Year 2 CSM 1 9953 19998 0.2944 0.5627 0.6919

CSM 2 9759 19766 0.2965 0.5809 0.7145

Table 5.3. Test with individual choice-set demand rates, likelihood and prediction
ratios on the full year datasets.

not really compare these results with the other choice models, because this
would mean comparing individual with general estimates and of course the
individual ones perform better. Only the choice-set demand rates are now
on individual level and the MNL parameter are still the same general ones
as before. We observe a high increase in prediction quality and also very low
NegLLH.
Next, we like to ask how the CSM performs in the summer periods, which are
much more homogeneous in demand. The results are shown in Table 5.4. As
expected we find that the CSM performs much better, CSM 2 even outperforms
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all other models by the PR Top1 ratio. Especially on the second year data, we
find that the both CSM models outperform the other quite significantly. Out
of the other models, which are closer together than in the full year periods,
the MLM with all random parameter scores the best results.

Dataset Choice model NegLLH AIC PR Top1 PR Top3 PR Top5
Year 1 MNL 2504 5060 0.2050 0.4881 0.6826

LCM C=2 2491 5090 0.2031 0.5167 0.6911
LCM C=4 2495 5206 0.2126 0.4805 0.7073
MLM F4Rnd 2500 5060 0.2040 0.5005 0.6826
MLM AllRnd 2479 5062 0.2221 0.5081 0.6959
NLM 1 2499 5056 0.2088 0.4919 0.6854
NLM 2 2508 5074 0.2040 0.4890 0.6883
CSM 1 2545 5182 0.2173 0.4643 0.6654
CSM 2 2508 5263 0.2316 0.5033 0.6892

Year 2 MNL 1932 3916 0.2153 0.4815 0.6280
LCM C=2 1919 3946 0.2140 0.4930 0.6548
LCM C=4 1897 4010 0.2153 0.4790 0.6420
MLM F4Rnd 1928 3916 0.2178 0.4777 0.6369
MLM AllRnd 1898 3900 0.2204 0.4815 0.6599
NLM 1 1936 3930 0.2178 0.4815 0.6318
NLM 2 1933 3924 0.2153 0.4764 0.6268
CSM 1 1937 3966 0.2471 0.4471 0.6293
CSM 2 1891 4030 0.2611 0.4662 0.6701

Table 5.4. Likelihood and prediction ratio results after estimation on the summer
(July & Aug.) datasets.

In the remainder, we will concentrate on the second year summer dataset and
have a deeper look into the model performance. For a better visualization we
will only report the results for the MNL, MLM AllRnd and the CSM choice
models. The MNL represents the best known and standard choice model, the
MLM is the most sophisticated and, as seen in Tab 5.4, the best performing
model from the literature. Table 5.5 provides the choice predictions at hotel
level on the second year summer dataset. The first 13 hotels are the 3-star
hotels, followed by the 4-star hotels and hotel 22 is the single 5-star hotel in
our dataset.
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Top1 Predictions Top3 Predictions Top5 Predictions
Hotel Sales MNL MLM CSM1 CSM2 MNL MLM CSM1 CSM2 MNL MLM CSM1 CSM2
hotel 1 9 0 0 0 0 0 0 0 0 0 1 0 0
hotel 2 40 0 0 0 0 0 6 0 5 3 22 10 17
hotel 3 9 0 0 0 0 0 0 0 0 0 0 0 0
hotel 4 1 0 0 0 0 0 0 0 0 0 0 0 0
hotel 5 36 0 1 3 0 1 10 6 10 15 16 13 20
hotel 6 13 1 0 1 0 2 1 1 1 2 2 1 2
hotel 7 46 0 1 0 10 17 34 14 31 43 39 35 36
hotel 8 26 0 0 0 7 0 0 7 12 0 9 8 17
hotel 9 2 0 0 0 0 0 0 0 0 0 0 0 0
hotel 10 6 0 1 0 0 0 1 1 1 0 1 1 1
hotel 11 13 0 0 0 0 0 1 0 0 2 3 0 1
hotel 12 3 0 0 0 0 0 0 0 0 0 0 0 0
hotel 13 77 32 32 11 22 56 44 53 52 74 65 65 61
hotel 14 36 0 0 0 0 3 1 14 5 14 12 23 22
hotel 15 35 6 0 0 0 6 6 0 0 8 10 6 12
hotel 16 47 0 0 0 2 36 28 19 18 36 37 36 36
hotel 17 13 0 0 0 0 0 0 0 0 0 0 0 0
hotel 18 29 0 0 0 0 0 0 0 0 1 3 5 5
hotel 19 93 0 18 77 64 93 81 91 73 93 92 91 82
hotel 20 148 130 114 102 100 148 148 138 140 148 148 147 147
hotel 21 63 0 6 0 0 15 17 6 17 45 47 36 47
hotel 22 40 0 0 0 0 1 0 1 1 9 11 17 20

Table 5.5. Predicted sales per hotel on the second year summer dataset.
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We observe that all models generate quite good results for the best selling
hotel, number 20. But the CSM models focus less on the best selling one and
score instead better on the other hotels. As we go from Top1 to Top5 results,
we see that more and more hotels get accounted.
Let us define three additional very informative model fit measures, with the
results given in Table 5.6. First, the adjusted prediction ratio, measuring the
right prediction proportion and correcting against a null model which would
always choose the most frequent outcome

Adj PR =
right predictions− n

all choice situations− n
, (5.29)

with n denoting the most frequent outcome, in our case hotel 20 as the best
selling hotel. Next, we define two pseudoR2, one measuring the predictions per
hotel and the other measures the predicted choice probabilities of the hotels.
We denote the actual sales of hotel h with sh and with eh the estimated or
predicted sales. Now we can define both pseudo R2 values by

pseudo R2I = 1−

∑

h∈hotels(sh − eh)
2

∑

h∈hotels(sh − s̄)2
, (5.30)

with s̄ =
1

|hotels|

∑

h∈hotels

sh,

pseudo R2II = 1−

∑

h∈hotels(psh − peh)
2

∑

h∈hotels(psh − p̄s)2
, (5.31)

with psh =
sh

∑

k∈hotels sk
,

peh =
eh

∑

k∈hotels ek
,

p̄s =
s̄

∑

k∈hotels sk
.

The resulting pseudo R2s are not necessary between 0 and 1, since they are
only pseudo values. This is especially true because they are not bounded from
below by zero and can be negative. Nevertheless, higher values indicate a
better model fit. The Adj PR gives a good indication on the added value
of the choice model. In line with the predictions on hotel level, we see that
the MNL and the MLM focus very much on the best selling hotel. The CSM
models maintain also with the adjusted PR measure a significant large score.
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Top1 Predictions Top3 Predictions Top5 Predictions
MNL MLM CSM1 CSM2 MNL MLM CSM1 CSM2 MNL MLM CSM1 CSM2

PR 0.2153 0.2204 0.2471 0.2611 0.4815 0.4815 0.4471 0.4662 0.6280 0.6599 0.6293 0.6701
Adj PR 0.0612 0.0926 0.1444 0.1648 0.3611 0.3611 0.3344 0.3548 0.5416 0.5808 0.5447 0.5950
pseudo R2 I -0.081 0.021 0.076 0.139 0.532 0.557 0.487 0.554 0.749 0.813 0.782 0.844
pseudo R2 II -8.14 -4.97 -4.21 -2.56 -0.79 -0.50 -0.88 -0.36 0.32 0.56 0.47 0.69

Table 5.6. Model fit measures for MNL, MLM and CSM; on the second year summer dataset.

Top1 Predictions Top3 Predictions Top5 Predictions
Star-group Sales MNL MLM CSM1 CSM2 MNL MLM CSM1 CSM2 MNL MLM CSM1 CSM2
3 star 281 33 35 15 39 76 97 82 112 139 158 133 155

0.36 0.12 0.12 0.05 0.14 0.27 0.35 0.29 0.4 0.49 0.56 0.47 0.55
4 star 464 136 138 179 166 301 281 268 253 345 349 344 351

0.59 0.29 0.3 0.39 0.36 0.65 0.61 0.58 0.55 0.74 0.75 0.74 0.76
5 star 40 0 0 0 0 1 0 1 1 9 11 17 20

0.05 0 0 0 0 0.03 0 0.03 0.03 0.23 0.28 0.43 0.50

Table 5.7. Predicted sales and percentages per hotel-star group on the second year summer dataset.
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The observations is the same for the pseudo R2s, the CSM models outperform
the other two models. When considering the Top3 and Top5 predictions, we
see that the results become naturally higher and that differences between all
models decrease. Finally, we present the predicted sales and the correspond-
ing percentages per hotel-star groups in Table 5.7. The 4-star hotels have the
largest share with 0.6% and the 5-star hotel the lowest with only 5%. The
3-star and 4-star groups are fairly well predicted. The 5-star hotel is very
poorly predicted by all four models. Only at the Top5 level, we obtain signif-
icant predictions.

5.4 Conclusion

In this chapter, we studied the performance of different choice models esti-
mated on real reservation data of an entire hotel market. We tested the well
known discrete choice models, starting with the standard choice model, the
multinomial logit model. Followed by its extensions such as the latent class
logit, the nested logit and the mixed logit model. These models are com-
pared with a newly proposed choice-set based model. Overall, no model is
tremendously outperforming the other. We observe that the pure choice mod-
els are superior to the choice-based approach, with constant rates, on datasets
with high variability. The results can be greatly improved by using individual
choice-set demand estimates instead of general demand rates. On datasets
with fairly homogeneous demand pattern, we find that the choice-set based
model outperforms the other significantly. The results show a strong increase
in added information and prediction quality by the choice-set model. A big
advantage of the choice-set based model is the merger of demand and choice.
It models the choice process and simultaneously computes demand rates per
customer types, which are also very suitable for forecasting. The other mod-
els are purely choice models, evaluating the probability for each alternative
to be chosen by a customer, with no information on the number or types of
customers to expect. The demand process is completely separated from these
models. As we have seen in this study, the estimation of choice models on
reservation data is practical, feasible and results in relatively good estimates.
The question remaining, is how to forecast detailed future demand with choice
behavioral information in such competitive and changing environments as the
hotel or airline business. The choice-set approach already divides the demand
into customer behavior groups. The corresponding demand functions are suit-
able for booking horizon forecasting techniques, which we will study in the
next chapter.



Chapter 6

A Forecasting with Updating Case Study

on Hotel Data

This chapter is based on the paper Haensel and Koole (2011a).

At the heart of every revenue management model always lies a demand fore-
cast, whose accuracy is crucial for the success of the model. Pölt (1998)
estimates for the airline industry that a 20% increase in forecast accuracy can
be translated in a 1% increase in revenue generated by the underlying RM
system. van Ryzin (2005) and Zeni (2007) argue that new models of demand
forecasts are needed to adjust to the new market situation with more compe-
tition and less restricted products.
Besides the choice of the forecasting model and its adjustment to the demand
time series, there are three important steps to include into the forecasting pro-
cess. The first step is data unconstraining. It is important to note that sales
figures are usually not equal to the real demand. This follows from capacity
restrictions, booking control actions and the existence of competitors. Second,
the customers’ choice behavior has to be considered. A variety of product of-
fers from a company or its competitors influence the customers’ purchasing
decision and thus the demand. The third point is the dynamic updating of
forecasts when new information becomes available. As shown in O’Connor
et al. (2000) the forecast accuracy can be improved by updating, especially
when the time series is trended. In case of travel, accommodation and holiday
products, the usual long booking horizons (plus the dependency of customer
decisions due to holidays, special events or super offers) give additional hope
for benefits from forecast updating. The first two points are covered by our
choice-set demand model and the proposed unconstraining algorithm. The
choice-set approach divides the demand into customer groups or types with
different choice behavior. The unconstraining algorithm estimates demand
rates per choice-set. Since the demand rates are independent per choice-set,
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we can separately apply forecasting methods to the different choice-set de-
mands. The focus of this chapter is the third point, the problem of forecast
updating. Intensive research on forecast updating is done in the context of
call centers. A significant correlation between within-day (morning, midday,
evening) call arrivals is found. Models are proposed to forecast not only the
call volume for future days, but also the updating of expected call volumes
for future time periods within the day. In Weinberg et al. (2007) a multi-
plicative Gaussian time series model, with a Bayesian Markov chain Monte
Carlo algorithm for parameter estimation and forecasting, is proposed. Shen
and Huang (2008) suggest a competitive updating method which requires less
computation time. Their method consists of a dimensionality reduction of the
forecasting problem and a penalized least square procedure to adjust the time
series forecast to observed realizations.
In this chapter we are adapting the ideas of Shen and Huang (2008) for call
center forecasting to the RM context of hotel reservation forecasting. The
equivalence to the within-day periods for which the forecast is updated is the
booking horizon in the RM setting. In contrast to the call center case, book-
ing horizons for different product instances are overlapping and correlated in
their booking pattern and behavior. Another important difference is the level
of forecast data. The call volume in call centers is generally very large, com-
pared to often small demand numbers in the revenue management case. In RM
problems a forecast on disaggregated level is required, since booking control
actions are applied daily and on product level. A detailed description of the
hotel reservation forecasting problem and its characteristics with a compari-
son of basic forecasting methods is given in Weatherford and Kimes (2003).
A more advanced model is presented by Rajopadhye et al. (2001), in which
they propose long-term forecasting of total reservations by the Holt-Winters
method with a combination of booking curve pickup methods for short-term
forecasts. More recently, Zakhary et al. (2011) presented a probabilistic hotel
arrival forecasting method based on Monte Carlo simulation. All approaches
aim to forecast the final reservation numbers, rather than the booking process,
which is the focus of this chapter and Haensel and Koole (2011a).

The chapter is organized as follows: First, in Section 6.1, we introduce and
analyze the data. Next, in Section 6.2, the forecasting methods are explained,
followed by the introduction of the forecast updating procedure and methods
in Section 6.3. Finally, in Section 6.4, numerical results are presented before
we summarize our findings in Section 6.5.
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6.1 Available Dataset

For our forecasting analysis we are able to work with real sales data, as in
the previous chapter provided by the company Bookit B.V. The data is ex-
tracted from three regions A,B and C. The selected regions have very different
characteristics such as reservation volume, city or countryside location and
distance from major market. A hotel product is a combination of region, ar-
rival day of week (DOW) and length of stay. For the analysis we consider a
booking horizon of four weeks prior to arrival at the hotel, thus the 28th day
coincides with the arrival day. The datasets consist of all reservations made
for a particular hotel product gathered over 3 years and multiple comparable
hotels over all regions. The hotel products are not divided into different price
classes, since hotels are interchangeable and products are not distinguished by
specific hotels, but by location and hotel standard. To better illustrate the
method, we will restrict this analysis to a fixed arrival DOW and length of
stay combination. This separation of the forecasting problem into DOWs is
widely common in practice, since the reservation patterns and volumes vary
significantly for different arrival DOWs, compare for a discussion with Weath-
erford and Kimes (2003). In research and practice it is common to work on
accumulated reservations, i.e., booking curves, rather than on individual reser-
vations per booking horizon day. However, we see two reasons to prefer the
latter. First, as a large reservations agency, one rarely runs out of stock. So
the primal goal is to maximize the daily number of reservations. Therefore
the second visualization form gives a more usable view as to which product
to promote. Second, as also stated in van Ryzin (2005), the current major
direction in revenue management research is to incorporate customer choice
behavior under offered alternatives. Thus, it is more important to know the
expected customer group demand per individual booking day rather than the
aggregated totals. We will work with both visualizations of the booking pro-
cess, using “Acc” and “Ind” to abbreviate the accumulated and individual
reservations respectively. Hence, we obtain six datasets on the three regions:
A-Acc, A-Ind, B-Acc, B-Ind, C-Acc and C-Ind. All datasets are given in form
of a n × m reservation data matrix X, with n = 155 product instances (as
rows) and their associated m = 28 booking horizon days (as columns). In
our case, the product instances correspond to the successive arrival weeks of
our hotel products, fixed DOW and length of stay. For clarity, the Xi,j entry
denotes the number of bookings made for product instance i (arrival week
i) at the jth day in the booking horizon. The first 130 product instances/
rows are used for data analysis, testing and parameter estimation. The last 22
instances/ rows are used in Section 5 for evaluation of the proposed forecast
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updating methods. There is a gap of four weeks between the estimation and
evaluation sample, caused by the time structure in the dataset: At arrival
of product i, the realization of the first booking horizon week of product in-
stance i + 3 is known. The booking behavior of the first three instances in
A-Acc and A-Ind, i.e., rows of X, are shown in Figure 6.1. The total aggre-
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Figure 6.1. Example plot of first three product instances / first three rows of A-Acc
and A-Ind.

gated numbers of reservations received for the first 130 product instances of
all regions are shown in Figure 6.2. Note that the time between the product
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Figure 6.2. Number of total aggregated reservations for the first 130 product in-
stances of all three regions.
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instances, one week, is much smaller than the booking horizon of four weeks.
The mean and variance of the booking behaviors within the booking horizon
for all datasets are shown in Figure 6.3. We observe that the variance is not
constant (heteroscedasticity) and that the variance is greater than the mean
(overdispersion). In order to stabilize and reduce the variance, we will work
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Figure 6.3. Mean and variance of booking process of all datasets.

on the logarithmic transformed data. Let x denote the number of reservations.
Set y = log(x + 1), one is added because the dataset contains many booking
days with zero reservations. The forecast of y is denoted by ŷ and the forecast
of x is then given by x̂ = exp(ŷ) − 1. The following forecasting methods are
working on the transformed data, and the forecast error analysis in Section 5
is made on the back transformed data.
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An important property in the data structure is the shifted realization time,
which means that parts of different product instances are realized at the same
time. For example, suppose we select a product instance i, i.e., the ith row in
X, and consider the corresponding time as the current time. All information
up to instance i plus the first three weeks of the booking horizon of the fol-
lowing instance i+1, the first two weeks of i+2 and the first week of instance
i + 3 are known at our current time. In other words, fixing an arrival week
in our data set as a time point enables us to know the demand realization for
the first three weeks of the booking horizon for the next-week-arrival prod-
uct. The same is true for the in-two-weeks arrival and in-three-weeks arrival
products, where we know the realization of the first two and first week of the
booking horizon, respectively. This paper is concerned with the question of
how to update reservation forecasts when the realizations of earlier time stages
in the booking horizon become known. Therefore we analyze the correlation
between reservations made at different moments of the booking horizon.

In Figure 6.4, the correlation coefficients between early (long in advance) and
late reservations (close to arrival at hotel) are plotted as a function of the
day in the booking horizon that is the frontier between early and late. The
correlation function for split day k is defined on the accumulated reservation
dataset X by

C(k) = corr (X·,k, (X·,28 −X·,k)) k = 1, . . . , 27, (6.1)

where corr(a, b) is a function returning the linear correlation coefficient be-
tween the vectors a and b. The correlation is found to be very different for
all three regions. The correlation is highest for region C and lowest for region
B. Consequently, the benefit of dynamic forecast updating is assumed to be
most beneficial for the datasets of region C. Also the shape of the correlation
function differs between the regions. The correlation in region A decreases
slightly over the booking horizon, in contrast to regions B and C where the
maximum is attained around day 15 (half of the considered booking horizon).

Now consider the correlation between bookings in different weeks. Define
wi = {7(i− 1)+ 1, . . . , 7(i− 1)+ 7}, the set of days in week i. The correlation
function defined on booking weeks wi and wj and a dataset X consisting of
individual reservations per booking day, is given by

C(wi, wj) = corr




∑

d∈wi

X·,d,
∑

d∈wj

X·,d



 . (6.2)
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Figure 6.4. Correlation coefficients C(k) for early-late booking split days k =
1, . . . , 27.

The correlations are shown in Table 6.1. Multiple subscripts represent the
aggregation over multiple weeks, e.g., w1,2,3 stands for the aggregated reser-
vations made in week 1, 2 and 3. It illustrates again the dependence between
early and late bookings.

Region C(w1, w2) C(w2, w3) C(w3, w4)
A 0.59 0.59 0.42
B 0.00 0.10 0.20
C 0.65 0.67 0.46

C(w1, w2,3,4) C(w2, w3,4) C(w1,2,3, w4)
A 0.41 0.44 0.27
B 0.16 0.24 0.33
C 0.64 0.68 0.53

Table 6.1. Correlation C(·, ·) of aggregated reservations between specific booking
weeks.

6.2 Forecasting Method

The reservation matrix X contains all reservations per product instance and
day in the booking horizon. Our aim is to forecast the number of future
reservations to expect for the forthcoming product instances in the next four
weeks. For a company that must choose each day which products to offer,
advertise or promote, it is very important to know the expected number of
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reservations per day in the booking horizon. Therefore the forecast is chosen to
work on individual numbers of reservations per booking day (“Ind” datasets)
as well as on the accumulated reservations (“Acc” datasets). Each of the
next four product instances (arrival weeks) has a booking horizon of m = 28
days. The ith row of X, xi = (xi,1, . . . , xi,m)⊤, represents all reservations per
day in the booking horizon of instance i. As in Shen and Huang (2008) we
are applying singular value decomposition (SVD) to reduce the forecasting
dimension. The procedure works as follows:
We are interested in computing a small number of base vectors f1, . . . , fK
with which the time series {xt} can be reasonably well approximated. The
decomposition is given by

xi = γi,1f1 + · · ·+ γi,KfK + ǫi i = 1, . . . , n, (6.3)

where γ ∈ R
n×K is the weight matrix, f1, . . . , fK ∈ R

m are the base vectors
and ǫ1, . . . ǫn ∈ R

m are the error terms. We suppose that the x′is can be well
approximated by a linear approximation of the base vectors, so that the error
terms are reasonably small. This leads to the following optimization problem

min
γ1,1, . . . , γn,K
f1, . . . , fK

n∑

i=1

‖ǫi‖ , (6.4)

for a fixed value K. This problem can be solved by applying SVD to matrix
X as follows. Matrix X can be rewritten as

X = USV ⊤, (6.5)

where S is a m ×m diagonal matrix, U and V are orthogonal matrices with
dimension n×m and m×m respectively. The diagonal elements of S are in
decreasing order and nonnegative, s1 ≥ · · · ≥ sr > 0, with r = rank(X) and
sk = 0 for all r + 1 ≤ k ≤ m. From (6.5) we follow now

xi = s1ui,1v1 + · · ·+ srui,rvr, (6.6)

where vk denotes the kth column of matrix V . The K-dimensional approxi-
mation is obtained by keeping the largest K singular values (K < r), since S
is ordered decreasingly the largest are equivalent with the first K values,

xi ≈ s1ui,1vi + · · ·+ sKui,KvK . (6.7)
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Setting now γi,k := skui,k and fk := vk, for all i = 1, . . . , n and k = 1, ...,K, we
have found an optimal solution of (6.4). The mean squared estimation error
(MSEE) of product instance i and fixed K is computed by

MSEEi =
1

m

m∑

j=1

(

xi,j −
(

K∑

k=1

γi,kfk
)

j

)2

. (6.8)

Figure 6.5 shows the empirical distribution function of the MSEE, computed
over the first 130 product instances, for different values of K. We find reason-
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Figure 6.5. Empirical distribution function of mean squared estimation errors for
different numbers of base vectors K.

ably small errors forK = 3. These values are still outperformed byK = 5 or 7,
but for computational reasons we try to keep the dimension small. In the nu-
merical results, where we use K = 3 and 5, we will see that K = 3 will produce
reasonably good forecasting results. The resulting three base vectors in the
case of K = 3 and their weights computed over the first 130 instances of the
datasets A-Acc and A-Ind are shown in Figure 6.6. The base vectors represent
the data characteristics in decreasing importance, i.e., the first base vector in
A-Ind represents the strong weekly pattern and the first base vector in A-Acc
represent the general increasing booking curve pattern. In fact, base vector f1
in A-Acc is negative and decreasing, but since the corresponding weights time
series γ1 takes negative values, the represented booking pattern is increasing.
Remember that the singular value decomposition is applied to the transformed
data, when comparing with Figure 6.3. The forecasting method will work on
the time series of γi,k values. The base vectors f1, . . . , fK are calculated on the
historical data and are kept fixed during the forecasting process. Due to the
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Figure 6.6. Base vectors fk and weights γi,k for K = 3.

construction of the weights series γ1, . . . , γK out of the columns of U, we have
that vectors γk and γl are orthogonal for k 6= l. Hence the cross correlation
between different weight series can be assumed to be small.
We initially choose as a forecasting method the univariate exponential smooth-
ing with trend and seasonality, i.e., the Holt-Winters (HW) method developed
by Holt (1957) and Winters (1960). Holt-Winters is a commonly used method
in similar problems, and in practice known to be reasonably accurate, robust
and easy to implement. Two seasonal models, additive and multiplicative,
are distinguished and both are tested on the three datasets. The additive
Holt-Winters (AHW) h-step ahead forecast of γi+h,k, for fixed k = 1, . . . ,K is

γ̂AHW
i+h,k = a(i) + h · b(i) + c

(
(i+ h) mod P

)
, (6.9)

where a(i), b(i) and c(i) are given by

a(i) = α ·
(
γi,k − c(i− p)

)
+ (1− α) ·

(
a(i− 1) + b(i− 1)

)
,

b(i) = β ·
(
a(i)− a(i− 1)

)
+ (1− β) · b(i− 1),

c(i) = δ ·
(
γi,k − a(i)

)
+ (1− δ) · c(i− p).

In contrast, the multiplicative Holt-Winters (MHW) h-step ahead forecast of
γi+h,k is

γ̂MHW
i+h,k =

(

a(i) + h · b(i)
)

· c
(
(i+ h) mod P

)
, (6.10)
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where a(i), b(i) and c(i) are computed by

a(i) = α ·
γi,k

c(i− p)
+ (1− α) ·

(
a(i− 1) + b(i− 1)

)
,

b(i) = β ·
(
a(i)− a(i− 1)

)
+ (1− β) · b(i− 1),

c(i) = δ ·
γi,k
a(i)

+ (1− δ) · c(i− p).

The period length is one year and because the product instances are weekly
p = 52. The initial values of a, b and c are derived from a simple decom-
position in trend and seasonal component using moving averages (averaging
for each time unit over all periods). The decomposition is performed by the
R function Decompose from the R-stats library. Optimal α, β and δ values
are found by minimizing the squared one-step prediction error, evaluated over
historical values. Since the weights time series γk take negative and positive
values, a positive constant is added in the MHW calculation to ensure posi-
tivity and subtracted from the forecasts before being processed further. The
Holt-Winters forecast for both seasonal models, of the future booking horizon
x̂HW
i+h = (x̂HW

i+h,1, . . . , x̂
HW
i+h,m) is computed by

x̂HW
i+h = γ̂HW

i+h,1 · f1 + · · ·+ γ̂HW
i+h,K · fK . (6.11)

The forecast accuracy for both seasonal models is tested on the sample of the
1-15 step/weeks ahead forecasts, starting at instance 110 (within the estima-
tion sample) and computed on all datasets. The mean squared errors between
the actual γk and forecasted γ̂HW

k are shown in Table 6.2 and abbreviated with
ǫk, for k=1,2,3. No seasonal model outperforms the other and both models

Dataset ǫ1 AHW ǫ1 MHW ǫ2 AHW ǫ2 MHW ǫ3 AHW ǫ3 MHW
A-Ind 2.28 2.30 1.23 1.23 1.12 1.12
A-Acc 5.18 5.18 0.79 0.79 0.80 0.80
B-Ind 0.41 0.40 0.29 0.29 0.51 0.51
B-Acc 18.82 19.06 1.42 1.42 2.34 2.78
C-Ind 7.03 7.05 1.87 1.87 0.34 0.40
C-Acc 9.93 10.81 0.90 0.90 0.11 0.11

Table 6.2. Holt-Winters mean squared errors between the actual and forecasted γ·,k.

produce generally the same forecast error. We will further continue only with
the additive seasonal model for the Holt-Winters forecasting method.
Our second forecasting approach is to decompose the γ time series into sea-
sonal, trend and remainder components and to apply an auto-regressive (AR)



110 Chapter 6. A Forecasting with Updating Case Study on Hotel Data

time series model on the remainder. The additive seasonal models seem to give
a good approximation. Therefore we apply a decomposition procedure based
on LOESS, i.e., local polynomial regression fitting, as described by Cleveland
et al. (1990). The decomposition is performed by the R function STL (seasonal
decomposition of time series by loess) from the R-stats library. The γ time
series are separately decomposed into additive seasonal, trend and remainder
components, see Figure 6.7 for the case of dataset A-Acc and K = 3. The
decomposition equation is

γi,k = si,k + di,k + ri,k for all i = 1, . . . , n and k = 1, . . . ,K, (6.12)

where s denotes the seasonal, d the trend and r the remainder component of
the time series γ. The auto-regressive model of r·,k of order p is given by

ri,k = νk + a1 · ri−1,k + · · ·+ ap · ri−p,k + ui,k, k = 1, . . . ,K, (6.13)

where a1, . . . , ap ∈ R represents fixed coefficients, uk a zero mean white noise
process and νk the intercept. When µk denotes the mean of r·,k, the intercept
is defined as νk = (1−

∑p
t=1 at)µk. Let r̂i,k denote the forecast of ri,k, the h-

step ahead forecast of the weights time series γk at instance i is then computed
by

γ̂AR
i+h,k = si+h,k + di+h,k + r̂i+h,k, (6.14)

where the trend component d is computed by a linear extrapolation of the last
five known trend values di−4,k, . . . , di,k and the respective seasonal components
s are obtained from the LOESS decomposition. The Akaike Information Cri-
terion (AIC) is used to find the optimal model order p. We test the AIC for
orders p = 0, . . . , 6 on all datasets. The AIC results were generally the best for
p = 1 and we will continue to use the AR(1) model for all six datasets. A fur-
ther interesting observation is that the dependency, measured by the pairwise
correlation coefficients, among the remainder r·,k time series after the decom-
position slightly increases compared to the dependency between the original
weights series γ·,k. Therefore, we will compare the univariate AR(1) model
with the vector auto-regressive (VAR) model, see Lütkepohl (2005) and Box
et al. (1994), on the joint remainder time series r. The VAR(1) model of the
remainder r(i) = (ri,1, . . . , ri,3) has the following form

r(i) = ν +A · r(i− 1) + ui, (6.15)

where A ∈ R
K×K represents a fixed coefficient matrix, u a zero mean white

noise process and ν the intercept. When µ denotes the mean of r, the intercept
is equivalently defined as ν = (I − A)µ. Let r̂ = (r̂i,1, . . . , r̂i,K) denote the
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where the trend component d is again computed by a linear extrapolation of
the last five known trend values. As in the comparison of both HWmodels, the
forecast accuracy of the AR and the VAR forecast is tested on the sample of
the 1 till 15 step ahead forecast, starting at instance 110 and computed on all
datasets. The mean squared forecast errors ǫk in the weights time series γk are
shown in Table 6.3. Both forecasts generate roughly the same forecast errors,

Dataset ǫ1 AR ǫ1 VAR ǫ2 AR ǫ2 VAR ǫ3 AR ǫ3 VAR
A-Ind 2.14 2.12 0.60 0.58 1.09 1.09
A-Acc 2.97 2.93 0.50 0.49 0.42 0.42
B-Ind 0.31 0.30 0.34 0.34 0.33 0.33
B-Acc 11.20 11.15 2.57 2.55 1.09 1.09
C-Ind 1.67 1.69 2.40 2.41 0.31 0.30
C-Acc 2.24 2.27 0.81 0.79 0.37 0.38

Table 6.3. AR and VAR mean squared errors between the actual and forecasted
γ·,k.

but a closer look shows that the VAR produces slightly smaller errors. More
interesting is to compare the accuracy results of the Holt-Winters with the
auto-regression forecasts, i.e., Table 6.2 with Table 6.3. The combination of
seasonal-trend decomposition and auto-regression forecasts on the remainder
increases the forecast accuracy significantly. In the remainder of the paper,
we will work with the VAR(1) model as the second forecasting method as
opposed to the AHW. The VAR forecast of the future booking horizon x̂VAR

i+h =

(x̂VAR
i+h,1, . . . , x̂

VAR
i+h,m) is obtained by

x̂VAR
i+h = γ̂VAR

i+h,1 · f1 + · · ·+ γ̂VAR
i+h,K · fK . (6.17)

6.3 Forecast Updating

With the previously described method, the forecaster is able to compute a
forecast of an entire booking horizon, i.e., a forecast of the accumulated book-
ing curve or the estimated incoming reservations for each day in the booking
horizon. The forecasting methods work only on completed booking horizons.
This means that we are not updating a forecast for future weeks when the
realization of week 1,2 or 3 become known. Furthermore, the information
of the booking realizations for 1,2 or 3 weeks prior to the forecast date are
not used in the computation, because their booking horizon is not completed
yet. Therefore we propose the following general updating procedure, which
includes one of the forthcoming updating methods.
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The procedure is as follows:

1. Forecast the next booking horizon based on data of all completed product
instances (of which all realizations are known).

2. If realizations of the forecasted booking process are known, update the
future part of the horizon accordingly.

3. If a further forecast is required, regard the forecasted (and updated)
horizon as completed and go back to 1.

The application of the procedure to our datasets (being at arrival of product
instance i) is as follows:

(1) A one week ahead forecast of the complete booking horizon for instance
i + 1 (the next week arrival) is generated based on data of all completed
booking horizons (instances 1, . . . , i). Realizations of the first three weeks in
the booking horizon are already known and the forecast of reservations in the
last week for instance i+ 1 are adjusted based on this.

(2) The adjusted forecast of i+1 is further regarded as the completed booking
horizon of instance i+ 1.

(3) A one week ahead forecast of the complete booking horizon for instance
i+2 is computed based on the data of all instances 1, . . . , i+1. Realizations of
the first two weeks are already known and the forecast for the last two weeks
of the booking horizon is adjusted.

(4) The adjusted forecast of i+2 is further regarded as the completed booking
horizon of instance i+ 2.

(5) A one week ahead forecast of the complete booking horizon for instance
i+3 is computed based on the data of all instances 1, . . . , i+2. The realization
of the first week is already known and the forecast for the following three weeks
is adjusted.

(6) The adjusted forecast of i+3 is further regarded as the completed booking
horizon of instance i+ 3.

(7) Finally, a one week ahead forecast of the complete booking horizon for
instance i+ 4 is computed based on the data of all instances 1, . . . , i+ 3. Be-
cause we are considering a booking horizon of four weeks, no bookings for this
instance are known and the forecast can not be adjusted.
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In the following we will discuss two forecast updating methods, as described
in Shen and Huang (2008). Let us concentrate on instance i+ 1, the forecast
of (6.11) or (6.17) can be written as

x̂i+1 = F γ̂i+1, (6.18)

where F = (f1, . . . , fK) denotes am×K matrix formed by the base vectors and
γ̂i+1 = (γ̂i+1,1, . . . , γ̂i+1,K)⊤ represents a column vector. Let the superscript a
denote that we only consider the first a columns of a matrix or components of
a vector. When xai+1 becomes known, we can compute the forecast error ǫai+1

by
ǫai+1 = xai+1 − x̂ai+1 = xai+1 − F aγ̂i+1. (6.19)

The direct least squares (LS) method would now try to solve the problem

γ̂LSi+1 = argminγ̂i+1

∥
∥ǫai+1

∥
∥2 , (6.20)

to find the γi+1 values for which the forecast of the first a days fits the actual
bookings xai+1 best. The LS solution can be obtained by

γ̂LSi+1 =
(
(F a)⊤F a

)−1
(F a)⊤xai+1. (6.21)

To uniquely define γ̂LSi+1, we need of course that a ≥ K. In our case K = 3 or
5, the booking horizon is further in days and the forecast updates are made
weekly, a = 7, 14 and 21. The idea is to apply the solution of (6.20) in (6.18)
to obtain the direct least squares forecast update x̂LSi+1 by

x̂LSi+1 = F γ̂LSi+1. (6.22)

Clearly this is a very volatile updating method and the forecast update will
not be too reliable for small a values compared to m, length of the whole
booking horizon. Therefore we suggest the penalized least squares method
(PLS), which works as the LS method but it penalizes large deviations from
the original time series (TS) forecast. The optimization problem (6.20) is
altered with the parameter λ to

γ̂PLS
i+1 = argminγ̂i+1

∥
∥ǫai+1

∥
∥2 + λ

∥
∥γ̂i+1 − γ̂TS

i+1

∥
∥
2
, (6.23)

where γ̂TS denotes the original time series forecast. We observe that if λ = 0,
γ̂PLS = γ̂LS , and for λ → ∞, γ̂PLS = γ̂TS . As shown in Shen and Huang
(2008), the PLS updated forecast can be computed with

γ̂PLS
i+1 =

(
(F a)⊤F a + λI

)−1(
(F a)⊤xai+1 + λγ̂TS

i+1

)
. (6.24)
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And finally, the PLS updated forecast of the future booking horizon x̂PLS
i+1 is

obtained by

x̂PLS
i+1 = γ̂PLS

i+1,1f1 + · · ·+ γ̂PLS
i+1,KfK . (6.25)

One other more intuitive updating approach is the historical proportion (HP)
method. The accuracy of the forecast is simply computed by the ratio of
already observed realization and their forecasted values. Suppose we are at
updating point a, i.e., realizations of the first a days in the booking horizon
are known. The ratio R is given by

R =

∑a
j=1 xi+1,j

∑a
j=1 x̂i+1,j

, (6.26)

keeping in mind that x̂i+1 denotes the time series based forecast of xi+1. The
HP updated forecast for the remaining booking days is the with R scaled x̂i+1,

x̂HP
i+1,j = R · x̂i+1,j j = a+ 1, . . . ,m. (6.27)

In the following section we will compare the PLS and HP updating method
with the forecast results that are not updated.

6.4 Numerical Results

In this section we will compare all combinations of the additive Holt-Winters
and the vector auto-regressive forecasts with the two previously proposed up-
dating methods penalized least squares and historical proportion, as well as
with the not updated forecasts (NU). The number behind the abbreviation of
the forecasting method (AHW or VAR) denotes the number of base vectors K
used in the singular value decomposition. In our test case we are working with
K = 3 or 5. The evaluation set consists of the last 22 instances, i.e., arrival
weeks, of our six datasets (instances 134-155). Thus, the evaluation is made
in a time frame of five months. As measures of forecast accuracy the mean
squared error (MSE) and the mean week relative absolute error (MWRAE)
are computed for the four booking horizon weeks. The squared error (SE) and
the week relative absolute error (WRAE) are defined for instance i and weeks
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w = 1, . . . , 4 by

SE(i, w = 1) =
∑7

k=1(xi,k − x̂i,k)
2 WRAE(i, w = 1) =

|
∑

7

k=1
xi,k−

∑
7

k=1
x̂i,k|∑

7

k=1
xi,k

SE(i, w = 2) =
∑14

k=8(xi,k − x̂i,k)
2 WRAE(i, w = 2) =

|
∑

14

k=8
xi,k−

∑
14

k=8
x̂i,k|∑

14

k=8
xi,k

SE(i, w = 3) =
∑21

k=15(xi,k − x̂i,k)
2 WRAE(i, w = 3) =

|
∑

21

k=15
xi,k−

∑
21

k=15
x̂i,k|∑

21

k=15
xi,k

SE(i, w = 4) =
∑28

k=22(xi,k − x̂i,k)
2 WRAE(i, w = 4) =

|
∑

28

k=22
xi,k−

∑
28

k=22
x̂i,k|∑

28

k=22
xi,k

.

The MSE and the MWRAE are computed by averaging the SE and WRAE
over our 22 evaluation instances. Both error measures are the ones used by the
company, Bookit. The MSE gives insight into the accuracy on daily level, while
the MWRAE provides the proportional absolute difference in week totals. The

Forecast Dataset λ1 λ2 λ3 Dataset λ1 λ2 λ3

VAR 3 A-Acc 0.0114 0.0452 0.1691 A-Ind 0.1676 0.2893 2.0623

VAR 5 0.0040 0.0182 0.0615 0.2617 0.8529 0.9294

AHW 3 0.0029 0.0213 0.0411 0.0736 0.1117 0.4801

AHW 5 0.0010 0.0072 0 0.1511 0.6909 0.3270

VAR 3 B-Acc 0.0206 0.0089 0.0594 B-Ind 148.6172 0 0.2699

VAR 5 0.0090 0.0093 0.0289 177.9697 0.0920 0.3775

AHW 3 0.0141 0.0099 0.0322 0.5054 0.1471 0.2225

AHW 5 1.1320 2.0711 0.0123 0.4020 0.3317 0.2757

VAR 3 C-Acc 0.0276 0.0452 0.0962 C-Ind 0.0236 0.4586 0.0635

VAR 5 0.0084 0.0275 0.0583 11.1344 0.2037 0.1561

AHW 3 0.0033 0 0.0015 0.0421 0 0.1801

AHW 5 0.0011 0 0.0187 0.0761 0 0.1431

Table 6.4. λ parameter for PLS updating methods, respectively for dataset and
booking week.

optimal λ parameter for the PLS are found by minimizing the MSE updating
error at the last 22 instances of the testing and estimation sample (instances
109 till 130), see Table 6.4 for the final values. λ1, λ2 and λ3 are respectively
used in the updating in booking horizon weeks 1,2 and 3. The best forecast and
updating method combinations for each dataset, which minimize the forecast
error per booking horizon week, are given in Table 6.5. All generated MSE
and MWRAE error results are shown in Tables 6.8-6.10, the smallest errors
for dataset and booking week combination are highlighted by an asterisk (*).
For the MSE we find in weeks 2, 3 and 4 the smallest values for the PLS
updated forecasts. Except for the C-Ind dataset in week 4, there the VAR 5
PLS value exceeds the VAR 3 HP value by 12, which only corresponds to a
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Dataset
MSE

1st week 2nd week 3rd week 4th week

A-Ind VAR 5 NU & PLS VAR 3 PLS VAR 3 PLS VAR 3 PLS

A-Acc VAR 3 NU VAR 3 PLS VAR 3 PLS VAR 3 PLS

B-Ind VAR 3 NU & PLS VAR 3 NU & PLS VAR 3 PLS VAR 3 PLS

B-Acc AHW 3 NU AHW 3 PLS VAR 3 PLS VAR 3 PLS

C-Ind VAR 3 HP & PLS VAR 3 NU & 5 PLS VAR 3&5 PLS VAR 3 HP

C-Acc VAR 3 NU VAR 3 PLS VAR 5 PLS VAR 5 PLS

MWRAE

1st week 2nd week 3rd week 4th week

A-Ind VAR 3 NU VAR 3 PLS AHW 3 PLS AHW 5 PLS

A-Acc VAR 3 NU VAR 3 PLS VAR 5 PLS VAR 3 PLS

B-Ind VAR 3 PLS VAR 3 PLS VAR 3 HP VAR 3 NU

B-Acc AHW 3&5 NU AHW 3 HP VAR 3 PLS VAR 5 PLS

C-Ind VAR 3 HP & PLS VAR 3 NU VAR 5 NU AHW 3 HP

C-Acc VAR 5 NU & PLS VAR 3 PLS VAR 5 PLS VAR 5 PLS

Table 6.5. Best forecast and updating methods respectively to minimization of MSE
or MWRAE per booking week and dataset.

mean absolute daily error of 0.5. We also observe that the VAR outperforms
the AHW forecast, except for the B-Acc dataset in week 1 and 2, but here
we find again an insignificant increase of the MSE by only 3 and 7 compared
with the VAR 5 PLS results. Considering the MWRAE we initially observe
that the accuracy increases with the amount of reservations contained in a
dataset. Consequently the C datasets have the lowest MWRAE, as they also
hold the most reservations. The VAR 5 forecast of week 4 in C-Acc without
updating already has a MWRAE of 0.18, but can still be decreased to 0.08
by the PLS updating method. Looking at the B-Acc dataset, again week 4
and VAR 5, the not updated forecast has a MWRAE of 0.73 which can be
significantly decreased by the PLS updating to 0.2. At first glance at Table
6.5 in the MWRAE area, the PLS updating is still the best, but with less
dominance compared to the MSE part. With a closer look at Tables 6.8-
6.10, we find that the PLS error values are very close to the best performing
methods; compare for example the VAR 3 PLS values for A-Ind, B-Ind and
C-Ind. Note that approximately 80% of all bookings are made within this
last three weeks of the booking horizon and still 60% within the last two
booking weeks. Therefore a forecast accuracy increase in the later part of the
booking horizon is more important than in the early stages. Comparing the
two forecasting methods additive Holt-Winters and vector auto-regression, we
observe that the mean values of the VAR outperform the AHW forecast. This
shows that the correlation between the base vectors should not be neglected.
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Figure 6.8. Example of reservation actuals vs. updated and not updated forecasts
for one instance of datasets A-Acc and A-Ind.

The results of the different updating methods are graphically illustrated in
Figure 6.8, for one instance of the evaluation set for datasets A-Ind and A-
Acc and base forecast VAR 3. For practitioners, the accurate forecast of the
overall number of reservations is as important as the forecast of the booking
curve or individual reservations per booking day. The total relative absolute
error (TRAE) for “Ind” datasets is then defined by

TRAE(i) =
|
∑28

k=1 x̂i,k −
∑28

k=1 xi,k|
∑28

k=1 xi,k
.

In case of accumulated “Acc” datasets the TRAE is simply computed by the
last column values

TRAE(i) =
|x̂i,28 − xi,28|

xi,28
.
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In Table 6.6 the different mean and median TRAE values are shown for all
datasets and updating methods applied to a VAR 3 forecast. The PLS is

Dataset
Mean TRAE Median TRAE

NU PLS HP NU PLS HP
A-Ind 0.28 0.21 0.27 0.24 0.16 0.28
B-Ind 0.46 0.32 0.40 0.44 0.33 0.46
C-Ind 0.22 0.17 0.21 0.23 0.16 0.20
A-Acc 0.22 0.11 0.28 0.21 0.09 0.24
B-Acc 0.54 0.30 0.92 0.41 0.26 0.66
C-Acc 0.18 0.11 0.27 0.16 0.10 0.25

Table 6.6. Mean and median of total relative absolute error (TRAE) for all updating
methods and datasets with VAR 3 as base forecast.

completely outperforming the not updating and HP updating in all cases.
Further, the TRAE for datasets of the same region is always minimized on
the accumulated dataset. Two interesting observations are: First, the HP
updating is only better than not updating in the case of “Ind” datasets, and
second that PLS updating on “Ind” datasets results in lower TRAE than
not updating on “Acc” datasets. Finally, we are interested in testing the

MSE
1st week 2nd week 3rd week 4th week

A-Ind λopt 16 22 29 58
A-Ind λest 16 24 31 58
A-Acc λopt 98 99 219 338
A-Acc λest 89 137 267 334

MWRAE
1st week 2nd week 3rd week 4th week

A-Ind λopt 0.27 0.25 0.33 0.35
A-Ind λest 0.28 0.27 0.38 0.34
A-Acc λopt 0.47 0.14 0.11 0.07
A-Acc λest 0.47 0.15 0.14 0.07

Table 6.7. MSE and MWRAE values of VAR 3 PLS with optimal (opt) and esti-
mated (est) λ values.

sensitivity of the PLS to its λ values. Therefore, we compare the MSE and
MWRAE generated using λ values estimated on historical data versus the error
values generated by optimal λ values, i.e., estimated by minimizing the MSE
over the evaluation set. In the following the VAR 3 is used as base forecast
method. The optimal λ1, λ2 and λ3 values are 0.4991, 0.0841 and 5.5078 for



120 Chapter 6. A Forecasting with Updating Case Study on Hotel Data

A-Ind and 0.0372, 0.0039 and 0.1789 for A-Acc, which are deviating from the
so far used values (see Table 6.4). The generated MSE and MWRAE results
of the optimal λ’s are given in Table 6.7. As expected, using the optimal λ in
the PLS updating results in an accuracy increase. But, we also find the error
decrease by using the optimal lambda values to be considerably small. These
results support our positive validation on the robustness of the PLS method.
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MSE MWRAE
1st week 2nd week 3rd week 4th week 1st week 2nd week 3rd week 4th week

A-Ind VAR 3 NU 16 23 35 64 0.26* 0.32 0.45 0.37
PLS 16 24* 31* 58* 0.28 0.27* 0.38 0.34
HP 17 29 32 74 0.36 0.40 0.37 0.46

VAR 5 NU 15* 25 38 66 0.30 0.32 0.46 0.37
PLS 15* 27 34 58 0.34 0.29 0.39 0.35
HP 16 30 38 75 0.34 0.42 0.40 0.46

AHW 3 NU 32 47 47 98 1.07 0.91 0.65 0.45
PLS 26 27 29 67 0.78 0.29 0.34* 0.34
HP 26 58 30 205 0.78 0.52 0.35 0.66

AHW 5 NU 34 50 51 101 1.05 0.97 0.65 0.44
PLS 36 31 44 64 0.90 0.35 0.49 0.33*
HP 36 54 37 295 0.90 0.55 0.36 0.68

A-Acc VAR 3 NU 85* 282 929 2,047 0.45* 0.32 0.32 0.25
PLS 89 137* 267* 334* 0.47 0.15* 0.14 0.07*
HP 193 1,148 1,467 2,696 0.60 0.54 0.30 0.24

VAR 5 NU 100 284 873 2,206 0.50 0.31 0.31 0.26
PLS 135 288 272 404 0.56 0.19 0.13* 0.08
HP 167 1,094 1,443 2,643 0.59 0.54 0.30 0.22

AHW 3 NU 373 1861 6,189 19,527 1.27 0.93 0.84 0.67
PLS 325 642 341 517 0.99 0.27 0.15 0.09
HP 325 16,320 5,203 207,650 0.99 0.74 0.41 0.67

AHW 5 NU 353 2,029 6,454 18,760 1.21 0.98 0.86 0.64
PLS 345 561 477 785 0.98 0.27 0.18 0.11
HP 345 34,193 5,153 100,050 0.98 0.89 0.41 0.57

Table 6.8. Region A: Mean squared errors (MSE) and mean week relative absolute errors (MWRAE) for all forecast
combinations - the asterisk highlights the smallest errors for each dataset and booking week combination.
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MSE MWRAE
1st week 2nd week 3rd week 4th week 1st week 2nd week 3rd week 4th week

B-Ind VAR 3 NU 1.5* 3.1* 5.4 2.7 0.61 0.69 0.74 0.50*
PLS 1.5* 3.1* 5.3* 2.6* 0.60* 0.67* 0.61 0.54
HP 1.5* 3.4 5.4 2.7 0.62 0.95 0.56* 0.59

VAR 5 NU 1.6 3.1 5.4 2.9 0.62 0.73 0.66 0.62
PLS 1.6 3.2 5.4 2.7 0.63 0.75 0.77 0.62
HP 1.6 3.4 5.6 2.9 0.65 0.94 0.73 0.70

AHW 3 NU 1.6 3.6 5.5 3.1 0.72 0.88 0.77 0.69
PLS 1.5* 3.5 5.3* 2.7 0.75 0.69 0.68 0.63
HP 1.5* 3.7 5.4 2.9 0.75 0.93 0.72 0.71

AHW 5 NU 1.7 3.6 5.5 3.3 0.76 0.94 0.73 0.77
PLS 1.5* 3.7 5.3* 2.9 0.77 0.74 0.86 0.73
HP 1.5* 3.7 5.4 4.6 0.77 0.94 0.74 1.07

B-Acc VAR 3 NU 13 47 85 93 3.37 3.71 1.65 0.74
PLS 13 41 43* 33* 3.01 1.89 0.76* 0.28
HP 14 282 764 434 3.47 0.86 1.11 0.80

VAR 5 NU 13 54 75 92 3.49 3.85 1.54 0.73
PLS 12 36 75 43 2.99 2.53 1.10 0.20*
HP 15 284 1,638 361 3.90 0.87 1.23 0.80

AHW 3 NU 9* 36 87 128 1.97* 3.70 3.23 1.08
PLS 14 29* 58 48 3.65 1.50 1.95 0.32
HP 14 39 574 1245 3.65 0.68* 1.15 0.51

AHW 5 NU 10 36 92 125 1.97* 3.63 3.43 1.06
PLS 15 36 201 63 3.68 3.43 6.60 0.27
HP 15 39 492 205 3.68 0.71 1.11 0.55

Table 6.9. Region B: Mean squared errors (MSE) and mean week relative absolute errors (MWRAE) for all forecast
combinations - the asterisk highlights the smallest errors for each dataset and booking week combination.
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MSE MWRAE
1st week 2nd week 3rd week 4th week 1st week 2nd week 3rd week 4th week

C-Ind VAR 3 NU 33 25* 43 85 0.42 0.20* 0.25 0.37
PLS 32* 27 37* 96 0.38* 0.29 0.23 0.38
HP 32* 31 46 80* 0.38* 0.34 0.27 0.37

VAR 5 NU 37 26 43 87 0.51 0.23 0.21* 0.38
PLS 35 25* 37* 92 0.47 0.21 0.25 0.40
HP 35 35 49 81 0.45 0.38 0.30 0.38

AHW 3 NU 52 65 122 265 0.81 0.62 0.72 0.76
PLS 41 26 43 109 0.70 0.26 0.28 0.47
HP 41 33 42 94 0.70 0.35 0.27 0.34*

AHW 5 NU 62 67 124 281 0.93 0.64 0.74 0.77
PLS 49 42 61 136 0.77 0.39 0.39 0.59
HP 49 48 40 99 0.77 0.47 0.23 0.36

C-Acc VAR 3 NU 156* 437 886 2,629 0.50 0.25 0.18 0.17
PLS 160 112* 371 963 0.47 0.09* 0.09 0.09
HP 233 2,513 2,468 4,900 0.54 0.44 0.29 0.25

VAR 5 NU 180 505 990 2,920 0.46* 0.27 0.19 0.18
PLS 188 128 286* 723* 0.46* 0.11 0.08* 0.08*
HP 255 2,781 2,762 5,981 0.56 0.43 0.29 0.25

AHW 3 NU 728 4,236 12,444 31,035 0.96 0.82 0.78 0.75
PLS 445 646 573 996 0.75 0.20 0.10 0.10
HP 445 4,924 1,286 9,693 0.75 0.57 0.22 0.30

AHW 5 NU 831 4,840 12,116 27,654 0.98 0.90 0.77 0.70
PLS 505 564 481 770 0.76 0.26 0.11 0.08
HP 505 5,622 1,149 15,958 0.76 0.63 0.21 0.30

Table 6.10. Region C: Mean squared errors (MSE) and mean week relative absolute errors (MWRAE) for all forecast
combinations - the asterisk highlights the smallest errors for each dataset and booking week combination.
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6.5 Summary

In this chapter, we have analyzed forecast updating methods using actual ho-
tel reservation data from three different regions. Statistical tests have shown
that there is a significant correlation between early and late bookings. Con-
sequently not updating the demand forecast when early realizations in the
booking horizon become available means ignoring important information that
can dramatically affect the end result. But, also for datasets with low corre-
lation between early and late bookings (region B in our data set) we observe
a significant accuracy increase by updating. The forecast updating is per-
formed dynamically when new demand realizations become available, in our
case weekly. The initial forecast results are then updated using either the
penalized least squares (PLS) or the historical proportion method. In the case
of a multi step ahead forecast, the base forecast produces multiple one step
ahead forecasts on historical data and previous updated forecasts. We find
that dynamic updating reservation forecasts using PLS is very beneficial in
most situations with low and high correlation between different parts of the
booking horizon, and is never significantly harmful compared to not updat-
ing. Also computationally the method is very fast and therefore feasible for
use by practitioners in larger forecasting problems. Singular value decompo-
sition is applied to reduce the dimensionality of the forecasting problem and
the results show its effectiveness. As base forecasts we use a multivariate vec-
tor autoregressive model and a univariate Holt-Winters model on the reduced
forecasting problem. The results show that the VAR outperform the AHW.
Thus, the dependency between base vectors after the SVD should not be ig-
nored. In addition, an increase of base vectors from 3 to 5 generally does not
result in lower error values. Overall, the VAR 3 forecast method seems to be
the best base forecast for our datasets.



Chapter 7

Time Dependent Bid Prices Models

This chapter is in part based on the paper Bijvank, Haensel, L’Ecuyer and
Marcotte (2011).

In the following, we consider a network revenue management problem. So
the firm is assumed to have different resources, with specific capacities, and
offers products which are compositions of resource units. The booking con-
trol is made by a bid price policy, originally studied by Simpson (1989) and
Williamson (1992). Talluri and van Ryzin (1998) precisely define a bid price
control as a set of bid prices for each resource in the network at each point
in time and each capacity, such that a request for a particular product is ac-
cepted if and only if there is available capacity and the price of the product
exceeds (is greater or equal to) the sum of bid prices for all units of resources
used by the product. The idea behind it is that a request is only accepted
when the price exceeds the marginal costs of the capacity reduction in case
of a sale. This idea is the reason why bid prices are usually directly or indi-
rectly derived by duality, the bid prices are associated with the dual variables,
shadow prices, related to capacity constraints in the primal problem. Talluri
and van Ryzin (1998) show that bid price controls are asymptotically opti-
mal, when capacities and demands are large. Further, there is no one-to-one
relation between optimal bid prices and opportunity costs. There are situa-
tions, where a set of bid prices generates optimal accept-reject decisions, but
is a poor estimate of the actual marginal value of capacity. The challenge is,
according to Talluri and van Ryzin (1998), to construct bid prices resulting
in close to optimal acceptance decisions and provide at the same time good
estimates of the opportunity costs, such that special events like group requests
can be optimally evaluated. Traditional approaches to compute the bid prices
are based on deterministic demand and therefore ignore distributional demand
information. Also, bid prices are static whereas the actual system is dynamic.
The dynamic behavior can be approximated by re-solving the static models.
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But, re-solving does not always improve the control, we refer to Secomandi
(2008) for a detailed study on re-solving. Dynamic bid prices are the focus
of recent research. Adelman (2007) studies the dynamic program (DP) of the
problem and assumes an affine value function, resulting in a linear program
(LP) formulation. A different approach is proposed by Topaloglu (2008), who
associates Lagrange multipliers with the capacity constraints in the DP for-
mulation and decomposes the network problem into its resource subproblems.
A similar method is proposed by Kunnumkal and Topaloglu (2010), but with
a different relaxation. All these models are based on the DP formulation and
assume at most one customer request per time period. This is unrealistic in
situations, when group request are present or when bid prices are not changed
at very high frequencies. For example, some airlines set their availabilities on
daily level and normally do not update these values during the day. Figure
7.1 shows an actual sales trajectory for a single price class. The availability is
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Figure 7.1. Actual airline sales trajectory for a single price class.

illustrated by the 0-1 curve, one indicating that the price class was available/
open. We observe that the open and close decision is on day level. Also, we
have many days without sales, but if there is a sale, we have often multiple
bookings. So the assumptions are not met in practice. An additional dis-
advantage of the previous models is their mathematical and computational
complexity.

The chapter continues with a description of the traditional bid price approach.
In Section 7.2, we introduce a new approach to compute time dependent bid
prices. Our TDB model assigns capacities to time varying demand and the
corresponding bid prices are computed directly in the primal optimization
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model and are not derived by duality. Section 7.3 proposes extensions of the
TDB to incorporate stochastic demand information. Section 7.4 extends the
models proposed in Bijvank et al. (2011) with formulations to incorporate the
customer’s choice behavior under offered alternatives, namely the considering
of choice-set demand as input. The chapter is summarized in Section 7.5.

7.1 Traditional Bid Price Approach

Let us start with some basic notation of the network RM problem. Consider
a network with M ∈ N resources, each with initial capacity c ∈ R

M . There
are N ∈ N products and r ∈ R

N denotes the product prices. The resource-
product matrix A ∈ {0, 1}M×N defines the structure of the network, such
that ai,j equals one if product j utilizes resource i and zero otherwise. The
jth column of A, denoted by Aj , represents the subset of resources utilized by
product j. Respectively, the ith row of A, denoted by Ai, represents the subset
of products consuming resource i. We consider a discrete booking horizon with
time stages t = 1, . . . , T , with t = 1 denoting the usage time of the product
and t = T the first period in the booking horizon. The demand D ∈ R

N×T is
assumed to be deterministic and given per product and time stage.

Generally, bid prices are derived by duality and are interpreted as the marginal
price of capacity. The standard approach is by the deterministic linear pro-
gram (DLP), described in Talluri and van Ryzin (2004b), which maximizes
the total revenue based on the expected demand. The primal optimization
problem at each time stage t with available inventory level x ≤ c is given by

V DLPP
t (x) = maxu r⊤ · u (7.1)

s.t. u ≤
∑

τ∈Tt

Dτ , (7.2)

A · u ≤ x, (7.3)

u ≥ 0, (7.4)

with Tt denoting the set of remaining time stages t, . . . , 1. The actual bid
prices π ∈ R

M are the dual solution associated with the capacity constraints
(7.3) in the primal problem. The dual problem is expressed by

V DLPD
t (x) = minγ,π

(
∑

τ∈Tt

Dτ

)⊤

· γ + x⊤ · π (7.5)

s.t. IN · γ +A⊤ · π = r, (7.6)

γ, π ≥ 0, (7.7)



128 Chapter 7. Time Dependent Bid Prices Models

with IN denoting the N -dimensional identity matrix. Theoretically, bid prices
must be updated whenever any of the input parameters, such as expected
demand or free inventory, change. So ideally, problem (7.5) would need to
be updated after each sale or customer arrival. For large RM networks, as
for airlines, this is computationally infeasible. Therefore, in most practical
settings, bid prices are updated on a daily or weekly schedule. In between, all
product requests, which fulfill the bid price condition, are accepted.

7.1.1 Small Example Network

Let us illustrate the results of the different optimization models on a small
airline network consisting of three airports A,B and C, as shown in Figure
7.2. The airline offers two price classes, high (H) and low (L), at each flight
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B

C

50

30

40

Figure 7.2. Example network with resource capacities.

and the booking horizon consists of 5 time stages, i.e., re-optimization steps.
Table 7.1 shows all products with prices and deterministic demand.

Product Route Class Price D·,t=1 D·,t=2 D·,t=3 D·,t=4 D·,t=5

1 AB H 150 4 4 3 2 2
2 AB L 110 2 2 2 3 3
3 BC H 150 4 4 3 2 2
4 BC L 110 2 2 2 3 3
5 ABC H 280 4 4 3 2 2
6 ABC L 230 3 3 3 4 4
7 AC H 350 5 5 3 3 2
8 AC L 300 3 3 3 4 4

Table 7.1. Example airline products.

The theoretic optimal obtainable revenue for this RM network is 22000. If we
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solve the problem (7.5) at the beginning of each time stage we only generate
a revenue of 20680, which is equivalent to 94% of the optimal revenue. The
computed bid prices and revenues per time stage are shown in Table 7.2.

Time stage Revenue πAB πBC πAC

5 1860 110 120 300
4 2240 80 150 300
3 4600 0 110 0
2 5880 0 110 0
1 6100 0 0 0

total 20680 - - -

Table 7.2. DLP results on the example network.

7.2 Time Dependent Bid Price Model (TDB)

The DLP may be a poor model of the real underlying problem, but it is
appealing, because it’s easy understandable and computational very efficient
even for large scale problems. Our proposed TDB model is to a certain degree
extending the DLP. Both models allocate product demand to resources. But
the TDB considers expected sales realizations per times t, which are captured
in Yt ∈ R

N . The idea is to compute a set of bid prices πt ∈ R
M , to be used

during time stage t = T, . . . , 1, which produce near optimal sales realization.
Remember when we use a bid price control, a product j in time period t will
be accepted when rj ≥

∑

i∈Aj
πi,t = A⊤

j πt. We define Yj,t ∈ {0, Dj,t}, i.e., we
accept all requests for product j at time t or none. Next, we need to introduce
assignment variables Z ∈ {0, 1}N×T , with Zj,t = 1 denoting that product j
is available at time t and zero otherwise. The bid price control at time t is
modeled by the following equation

r = A⊤πt + Ut − Vt. (7.8)

The additional slack variables Ut ∈ R
N
+ represent a positive difference between

product price and the sum of bid prices

Uj,t =

{

rj −A⊤
j πt , if Zj,t = 1

0 , else
, (7.9)

and Vt ∈ R
N
+ represent the respective negative difference

Vj,t =

{

A⊤
j πt − rj , if Zj,t = 0

0 , else
. (7.10)
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The complete TDB model at time stage t and available capacity level x takes
the following form

V TDB
t (x) = max

Y,π

∑

τ∈Tt

r⊤ · Yτ (7.11)

s.t. A ·

(
∑

τ∈Tt

Yτ

)

≤ x (7.12)

Yτ = Dτ · Zτ ∀τ ∈ Tt (7.13)

r = A⊤πτ + Uτ − Vτ ∀τ ∈ Tt (7.14)

Uτ ≤ κ · Zτ ∀τ ∈ Tt (7.15)

Vτ ≤ κ · (1− Zτ ) ∀τ ∈ Tt (7.16)

ǫ ≤ Zτ + Vτ ∀τ ∈ Tt (7.17)

Zτ ∈ {0, 1}N ∀τ ∈ Tt (7.18)

Uτ , Vτ ≥ 0 ∀τ ∈ Tt (7.19)

with κ denoting a sufficient large constant and ǫ a small but strictly positive
constant. Constraint (7.12) defines the capacity limit, whereas the demand
allocation is defined in constraint (7.13). The bid price control is modeled
in constraints (7.14)-(7.19). Constraint (7.17) ensures that Vj,τ and Zj,τ can
not simultaneously equal zero, according to the bid price policy a product is
available if there is no negative difference between product price and the sum
of utilized bid prices.
We solved the example network from Section 7.1.1 with the TDB model, gen-
erating a revenue of 21700 which equals 98.6% of the optimal revenue and
improves the DLP revenue by 4.9%. The computed bid prices per time stage
and the respective revenues are shown in Table 7.3.

Time stage Revenue πAB πBC πAC

5 3390 81 150 0
4 4660 0 150 0
3 3700 0 150 301
2 4980 0 150 301
1 4970 111 150 0

total 21700 - - -

Table 7.3. TDB results on the example network.

So far, we assumed deterministic demand and disregarded the stochastic na-
ture of the problem.
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7.3 Stochastic TDB Extensions

The current section proposes scenario based stochastic programming (SP) ex-
tensions of the TDB model. Demand samples/ scenarios are used to approx-
imate the demand uncertainty. The overall objective is to compute a single
set of bid prices π, which maximizes the expected revenue over all scenarios.
A scenario based SP approach is successfully applied to the car rental RM
problem, see Haensel et al. (2012). This framework also allows to change the
expected revenue objective into more risk averse formulation, such as max-
imizing the conditional value-at-risk (CVaR) revenue realization, to obtain
more robust solutions. A related risk averse CVaR application to the prob-
lem of evaluating extraordinary large requests in a RM network is found in
Haensel and Koole (2011c). The scenario approach allows to model complex
stochastic problems, such as the scheduling in queueing systems as in Haensel
et al. (2011a), which are often not tractable by Markov decision processes for
realistic sized instances due to the large state space of the models. Let us
return to our bid price RM problem. The demand scenarios D(s) ∈ R

N×T

with s = 1, . . . , S are generated by means of simulation and each has a prob-
ability of 1

S
. We are aware of scenario reduction algorithms, e.g., as proposed

by Heitsch and Römisch (2009), but our focus is on the SP formulation and
not on advanced scenario generation techniques. The resulting sales realiza-
tion are likewise scenario specific and similar denoted by Y (s). We want to
compute an optimal set of bid prices πτ , for all τ ∈ Tt, which maximizes the
expected revenue

1

S

(

r⊤
∑

s∈S

∑

τ∈Tt

Y (s)
τ

)

, (7.20)

with S denoting the set of all scenarios {1, . . . , S}. The problem with the con-
sideration of stochastic demand is the capacity limiting constraint. Namely,
the question on how to deal with potential overbookings in high demand
scenarios resulting from the bid price policy, which accepts all requests for
products with prices exceeding the sum of utilized bid prices. The classical
definition of a bid price control assumes total knowledge of available capaci-
ties. We believe that this assumption is not always the case, especially when
a firm works with a global network of sales channels and multiple sales agents
simultaneously. In such cases, real time full information sharing can be a prob-
lematic issue. Hence, we will propose a model, the virtual overbooking model,
which assumes this full capacity information and two other approaches, which
assume that during a time stage the accept/reject decision is purely made
according to the bid prices. Moreover, overbooking is a common RM practice



132 Chapter 7. Time Dependent Bid Prices Models

and is usually done by simply inflating the capacity limit to some predefined
overbooking level. The following three approaches allow a more sophisticated
treatment.

7.3.1 Minimized Overbookings with Dynamic Bid Prices (MOD)

The idea is to correct for overbookings directly in the objective function. We
introduce penalty costs λi for every sold unit of resource i exceeding the ca-
pacity. Therefore, we need to introduce scenario specific overbooking variables
W (s) ∈ R

M
+ . The resulting MOD formulation takes the following form

V MOD
t (x) =max

Y,π

1

S

(

r⊤
∑

s∈S

∑

τ∈Tt

Y (s)
τ − λ⊤

∑

s∈S

W (s)

)

(7.21)

s.t. A ·

(
∑

τ∈Tt

Y (s)
τ −W (s)

)

≤ x ∀s ∈ S

Y (s)
τ = D(s)

τ · Zτ ∀τ ∈ Tt, ∀s ∈ S

r = A⊤πτ + Uτ − Vτ ∀τ ∈ Tt

Uτ ≤ κ · Zτ ∀τ ∈ Tt

Vτ ≤ κ · (1− Zτ ) ∀τ ∈ Tt

ǫ ≤ Zτ + Vτ ∀τ ∈ Tt

Zτ ∈ {0, 1}N ∀τ ∈ Tt

Uτ , Vτ ≥ 0 ∀τ ∈ Tt

W (s) ≥ 0 ∀s ∈ S.

7.3.2 Restricted Overbookings with Dynamic Bid Prices (ROD)

Risk awareness is an increasing trend in corporations and has lead to a growing
number of risk dependent operations research applications. As found for exam-
ple in Haensel and Koole (2011c), on the problem of evaluating extraordinary
large requests in network RM, or Haensel and Laumanns (2012), who study
a problem of non-compliance risk in production planning. A well known risk
measure from portfolio optimization is the conditional value-at-risk (CVaR),
a coherent risk measure proposed by Artzner et al. (1999). It was proposed
as an alternative risk measure to the widely used value-at-risk (VaR), which
is defined for a continuous distributed random variable X by

VaR1−α = F−1(α) = inf{x|P (X ≤ x) ≥ α}, (7.22)
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where α denotes the risk level and F (·) the cumulative distribution function.
Hence, the VaR1−α is simply the α-Quantile. Coherent risk measures satisfy
the following four properties: translation invariance, sub-additivity, positive
homogeneity and monotonicity. The VaR is generally not sub-additive, i.e.,
for two random variables X and Y it does not generally hold that VaR(X +
Y ) ≤ VaR(X) + VaR(Y ). The CVaR is a coherent risk measure and is for a
continuous distributed random variable X defined by

CVaR1−α(X) = E[X|X ≥ VaR1−α]. (7.23)

A graphic illustration of the VaR and CVaR of a random variable, representing
loss realizations, is given in Figure 7.3. A second advantage of the CVaR, also
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Figure 7.3. Example loss distribution with VaR and CVaR.

called mean shortfall, is that it provides an estimate of the expected outcome
in the (1 − α)% extreme cases. Whereas the VaR only indicates that the
(1− α)% extreme outcomes will take values above the VaR, but without any
additional information on the potential impact of the extreme realizations.
Rockafellar and Uryasev (2002) show that the CVaR1−α for general, even
discrete, distributed random variables X, can be efficiently computed by

min
w

w +
1

1− α
E[max{0, X − w}], (7.24)

the solution of w provides the corresponding VaR1−α of the underlying dis-
tribution. In contrast to the MOD approach, our objective is not to penalize
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overbookings in the objective function, but to bound the expected overbook-
ings at a certain risk level α by some predefined overbooking limit b. In other
words we introduce a CVaR constraint on the overbooking realizations of the
demand scenarios under a bid price control π. The LP formulation of equation
(7.24) takes the following form

W +
1

1− α

1

S

∑

s∈S

η(s) ≤ b (7.25)

A ·

(
T∑

τ=1

Y
(s)
t

)

− c−W ≤ η(s) (7.26)

0 ≤ η(s), (7.27)

with W ∈ R
M denoting the resource dependent VaR variable , b ∈ R

M the
predefined overbooking resource limits and η(s) ∈ R

M represents a scenario
dependent slack variable. The complete ROD model is written as

V V OD
t (x) =max

Y,π

1

S

(

r⊤
∑

s∈S

∑

τ∈Tt

Y (s)
τ

)

(7.28)

s.t. A ·

(
∑

τ∈Tt

Y
(s)
t

)

− x−W ≤ η(s) ∀s ∈ S

W +
1

1− α

1

S

∑

s∈S

η(s) ≤ b

Y (s)
τ = D(s)

τ · Zτ ∀τ ∈ Tt, ∀s ∈ S

r = A⊤πτ + Uτ − Vτ ∀τ ∈ Tt

Uτ ≤ κ · Zτ ∀τ ∈ Tt

Vτ ≤ κ · (1− Zτ ) ∀τ ∈ Tt

ǫ ≤ Zτ + Vτ ∀τ ∈ Tt

Zτ ∈ {0, 1}N ∀τ ∈ Tt

Uτ , Vτ ≥ 0 ∀τ ∈ Tt

η(s) ≥ 0 ∀s ∈ S.

It is also possible to extend the ROD model with penalty costs for overbook-
ings, so that the CVaR on the costs associated with overbookings is bounded
by some predefined value. An important question in the ROD approach is
of course the choice of α and b values to be used in the computation. The
“optimal” choice is problem specific and requires additional analysis of the
actual problem case.
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7.3.3 Virtual Overbookings with Dynamic Bid Prices (VOD)

We now assume that the booking control has always full information of the
available capacities. So an actual overbooking can practically not happen.
Still, we need to deal with high demand scenarios in our optimization model.
Problems arise, when we have a scenario s and an available product j, i.e.,
rj ≥

∑

i∈Aj
πi,t, and there is not enough capacity left, i.e, for some resource i

the (Ai)(
∑

τ>t Y
(s)
τ + D

(s)
j,t ) > ci. For such cases, we introduce the notion of

virtual overbookings W
(s)
j,t on a product j at time t in demand scenario s, such

that Y
(s)
j,t + W

(s)
j,t = D

(s)
j,t Zj,t with (Ai)

∑

τ≥t Y
(s)
τ ≤ ci. The complete VOD

formulation is given by

V V OD
t (x) =max

Y,π

1

S

(

r⊤
∑

s∈S

∑

τ∈Tt

Y (s)
τ

)

(7.29)

s.t. A ·

(
∑

τ∈Tt

Y (s)
τ

)

≤ x ∀s ∈ S

Y (s)
τ +W (s)

τ = D(s)
τ · Zτ ∀τ ∈ Tt, ∀s ∈ S

W (s)
τ ≤ κA⊤W̄ (s)

τ ∀τ ∈ Tt, ∀s ∈ S

W̄
(s)
τ−1 ≥ W̄ (s)

τ ∀τ ∈ Tt, ∀s ∈ S

AY
(s)
τ−1 ≤ κ(1− W̄ (s)

τ ) ∀τ ∈ Tt, ∀s ∈ S

r = A⊤πτ + Uτ − Vτ ∀τ ∈ Tt

Uτ ≤ κ · Zτ ∀τ ∈ Tt

Vτ ≤ κ · (1− Zτ ) ∀τ ∈ Tt

ǫ ≤ Zτ + Vτ ∀τ ∈ Tt

Zτ ∈ {0, 1}N ∀τ ∈ Tt

W̄ (s)
τ ∈ {0, 1}M ∀τ ∈ Tt, ∀s ∈ S

Uτ , Vτ ≥ 0 ∀τ ∈ Tt

W (s)
τ ≥ 0 τ ∈ Tt, ∀s ∈ S.

Customer demand exceeding the capacity is only virtually assigned and we
do not gain revenue from it nor does it reduce available resources. When
a resource i is virtually overbooked, i.e., there is a scenario s and time t

with (Ai)
∑

τ≥tD
(s)
τ Zτ > ci, we can not allocate any additional demand to it.
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Therefore we introduce a indicator variable W̄ (s) ∈ {0, 1}M×T with

W̄
(s)
i,t =

{

1 , if (Ai)
∑

τ≥tD
(s)
τ Zτ ≤ ci

0 , else.
(7.30)

Once a resource is virtually overbooked, it retains in the status for the rest of
the booking horizon.

For a detailed comparison study of all above mentioned methods, also with a
reformulated Lagrangian relaxation method based on Kunnumkal and Topaloglu
(2010), we refer to Bijvank et al. (2011). The focus of this book is on a new
choice-base demand model, namely the choice-set approach. An extension of
the TDB for choice-set demand is presented in the next section.

7.4 Choice-set based TDB Model (CTDB)

Up until now, all models in this chapter did not consider the customer’s
choice behavior under offered alternatives and assumed independent product
demand. This section extends the TDB model to incorporate choice behav-
ior. Demand information is given in the form of choice-sets, as introduced in
Chapter 2, i.e., the demand matrix D ∈ N

C×T is now given per choice-sets and
time stages, with C denoting the number of choice-sets. We further assume
the market to have customer segments with hierarchical preference. A small
example will illustrate this assumption: Let us consider a flight with two fare
classes F1 and F2, with price of F1 being less than price of F2. Remember that
choice-sets are sets of substitutable products with a strict decreasing preference
order, representing interest and the willingness to buy of a certain customer
group. All possible choice-sets in our example are: {F1}, {F2}, {F1, F2} and
{F2, F1}. In a market with hierarchical customer preference, we assume that
the customer group represented by choice-set {F2, F1} does not exist or can
be neglected from the consideration. In other words, customers can only have
hierarchical preferences in one direction, i.e. you can prefer the low fare class
over the high fare class, but not vice versa.

Choice-sets are represented by a binary matrix CS ∈ {0, 1}C×N̂ , with N̂ =
N + 1 and entries of the matrix are interpreted as follows

CSi,j =

{

1 , choice-set i contains product j

0 , choice-set i does not contain product j.
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The number of products is increased by one to account for the non-purchase
decision, the additional virtual product has a zero utility for the customer and
represents the least favored choice. The product price vector r is also increased
by one dimension and r

N̂
= 0, since the non-purchase decision generates no

revenue. Also, we need to expand the resource product matrix with a zero
column for A

N̂
as the non-purchase decision consumes no resource capacities.

The hierarchical preference assumption allows us to order our products such
that the CS matrix is in a very intuitive form. Namely, the preference order
of the products within a choice-set can be read in decreasing order from left
to right. In mathematical terms, there exists a product ordering, with indexes
given by the one-to-one mapping ind(·), such that, if products k and l are
contained in a choice-set i and product k is preferred over l, we have that
CSi,k = 1 and CSi,l = 1 and ind(k) < ind(l). The CS matrix of our initial
two fare class example is shown in Table 7.4, with ∅ denoting the non-purchase
decision.

F1 F2 ∅
{F1, ∅} 1 0 1
{F2, ∅} 0 1 1
{F1, F2, ∅} 1 1 1

Table 7.4. CS matrix of initial two fare class example with hierarchical preferences.

Please note that the hierarchical preference assumption is not a necessary
condition, more a nice technical assumption, which is often found in practical
problems. The assumption can be relaxed and we can still write the CS
matrix in its intuitive decreasing preference from from left to right. But the
CS definition is not as straightforward and we need to increase the product
set with duplicate entries, as shown in Table 7.5.

F1 F2 F1 ∅
{F1, ∅} 1 0 0 1
{F2, ∅} 0 1 0 1
{F1, F2, ∅} 1 1 0 1
{F2, F1, ∅} 0 1 1 1

Table 7.5. CS matrix of initial two fare class example without hierarchical prefer-
ences.
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An ordered product set for our example network, is given by

P = {A → B L, A → B H,

B → C L, B → C H,

A → B → C L, A → B → C H,

A → C L, A → C H, ∅},

The low fare class is always preferred to the high fare class and the last product
represents the non-purchase decision. An example choice-set matrix CS with
nine choice-sets is shown in Table 7.6.

AB L AB H BC L BC H ABC L ABC H AC L AC H ∅
c = 1 1 0 0 0 0 0 0 0 1
c = 2 1 1 0 0 0 0 0 0 1
c = 3 0 0 1 0 0 0 0 0 1
c = 4 0 0 1 1 0 0 0 0 1
c = 5 0 0 0 0 1 0 0 0 1
c = 6 0 0 0 0 1 1 0 0 1
c = 7 0 0 0 0 1 1 1 0 1
c = 8 0 0 0 0 0 0 1 0 1
c = 9 0 0 0 0 0 0 1 1 1

Table 7.6. CS matrix of the example network.

Choice-set 7, with its equivalent notation {A → B → C L, A → B →
C H, A → C L, ∅}, represents customers who are interested in a flight
from A to C and are mainly price sensitive with a maximum willingness to
pay strictly less than 350. They prefer the low price connecting flight over
the high priced connecting flight, the latter is preferred over the low priced
direct flight and if none of the three is available these customers do not buy
any product.

Next, we need to model the allocation of demand per choice-set into sales per
products, according to the booking control. This can be referred to as the
constraining of demand, whereas the unconstraining in Chapter 2-4 denotes
the process of retrieving demand information from given product sales data.

The dimension of the binary assignment variable Z is extended to account

for the choice-set dimension, i.e., Z ∈ {0, 1}C×N̂×T . Z indicates the product
each customer will choose, according to the corresponding choice-set and the
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booking control. The product allocation constraint (7.13) in the TDB model,
is rewritten into

Yp,τ =
∑

c∈C

Dc,τ · CSc,p · Zc,p,τ ∀p ∈ P, ∀τ ∈ Tt, (7.31)

with C = 1, . . . , C denoting the set of all choice-sets and P = 1, . . . , N̂ the set
of all products. This explains why we had to add an additional virtual product
representing the non-purchase decision. Customers can not be lost in the way
that they make no decision nor can they make multiple simultaneous choices,
i.e., they are always assumed to buy exactly one of the offered products or to
make the non-purchase decision. The according constraints are

∑

p∈P

Zc,p,τ = 1 ∀c ∈ C, ∀τ ∈ Tt (7.32)

∑

c∈C

Zc,p,τ ≤ N̂ · Ẑp,τ ∀p ∈ P, ∀τ ∈ Tt, (7.33)

the variable Ẑ ∈ {0, 1}N̂×T indicates the availability or non-availability of
products per time stages, denoted by one or zero respectively. Constraint
(7.32) ensures that each choice-set is assigned to exactly one product and con-
straint (7.33) assures that Ẑp,t = 1 if at least one choice-set is assigned to
product p at time period t.

The strict preference structure of the choice-sets is modeled with the help of

matrix B ∈ {−1, 0, 1}N̂×N̂ , having the following structure

Bi,j =







1 , if i = j

−1 , if i > j

0 , if i < j.

Using matrix B, we can ensure that a choice-set is always assigned to the
available product with the highest preference within the choice-set. For all
combinations of choice-set c, product p and time stages τ we need to force

∑

q∈P

Ẑq,τ ·Bp,q · CSc,q ≤ Zc,p,τ . (7.34)
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The complete CTDB model takes the following form:

V CTDB
t (x) =max

Y,π

∑

τ∈Tt

r⊤ · Yτ (7.35)

s.t. A ·

(
∑

τ∈Tt

Yτ

)

≤ x

Yτ =
∑

c∈C

Dc,τ · CSc · Zc,·,τ ∀τ ∈ Tt

∑

p∈P

Zc,p,τ = 1 ∀c ∈ C, ∀τ ∈ Tt

∑

c∈C

Zc,p,τ ≤ N̂ · Ẑp,d ∀p ∈ P, ∀τTt

∑

q∈P

Ẑq,τ ·Bp,q · CSc,q ≤ Zc,p,τ ∀c ∈ C, ∀p ∈ P, ∀τ ∈ Tt

rp = A⊤
p,· · πd + Up,τ − Vp,τ ∀p < N̂, ∀τ ∈ Tt

Uτ ≤ κ · Ẑτ ∀p < N̂, ∀τ ∈ Tt

Vτ ≤ κ · (1− Ẑτ ) ∀p < N̂, ∀τ ∈ Tt

ǫ ≤ Ẑτ + Vτ ∀p < N̂, ∀τ ∈ Tt

0 ≤ Uτ , Vτ ∀τ ∈ Tt

Z ∈ {0, 1}C×N̂×t

Ẑ ∈ {0, 1}N̂×t

The new bid price constraints are only working on the real products p =
1, . . . , N , the non-purchase option is by default available if the bid price con-
trol closes all real products.

Similar to the TDB, we can also extend the CTDB for stochastic demand
input per choice-set.

An interesting question is of course, how the CTDB performs compared to
the TDB, when the choice-sets only consist of single products. So products
are no substitutes and there are no buy-up possibilities in the market. The
CTDB should then generate the same revenue as the the TDB. The according
choice-set definition matrix CS is given in Table 7.7. The respective demand
matrix is simply the product demand matrix, since choice-sets are in this case
equivalent to products.
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AB L AB H BC L BC H ABC L ABC H AC L AC H ∅
c = 1 1 0 0 0 0 0 0 0 1
c = 2 0 1 0 0 0 0 0 0 1
c = 3 0 0 1 0 0 0 0 0 1
c = 4 0 0 0 1 0 0 0 0 1
c = 5 0 0 0 0 1 0 0 0 1
c = 6 0 0 0 0 0 1 0 0 1
c = 7 0 0 0 0 0 0 1 0 1
c = 8 0 0 0 0 0 0 0 1 1

Table 7.7. CS matrix of the example network without substitution.

As expected, the CTDB generates a revenue of 21700, same as the TDB. The
results are shown in Table 7.8. The CTDB bid prices differ from the TDB
ones, but this is only because the example does not have a unique bid price
solution.

Time stage Revenue πAB πBC πAC

5 3390 110 121 0
4 4660 0 111 0
3 2790 111 150 301
2 4980 0 150 301
1 5880 0 150 0

total 21700 - - -

Table 7.8. CTDB results on the example network with no substitutable products.

7.5 Summary

In this chapter, we developed a new time dependent bid price approach, which
allows for an optimal acceptance control of multiple arriving customers per
time stage. The deterministic TDB model is expanded with three stochastic
programming approaches, to incorporate stochastic demand information in
the form of scenarios in the optimization problem. The different approaches
reflect different treatments of potential overbookings in the sales process. The
time dependent bid price model is further extended to consider the customer’s
choice behavior and to account for customer preferences. More precisely, we
extended the TDB model to work with choice-set demand. A simulation test
of the resulting CTDB on markets with different choice behavior, i.e., different
degrees of buy-up/ substitution possibilities, is presented in following chapter.





Chapter 8

A Combined Simulation Test

The objective of this chapter is to test the combination of all three aspects of
an RM system (unconstraining, forecasting and optimization) in a simulation
study. In the previous parts, the focus was always only on one aspect at a time.
Naturally, revenue management is an integrated and dynamic process where
unconstraining, forecasting and optimization are simultaneously performed.
The goal of the chapter is first to provide an example of integrating choice-set
demand into all RM aspects, and second to show the performance potential
of a choice-set based revenue management system. A simulation study is
chosen to really evaluate the behavior and performance of the proposed choice-
set demand model. In case studies on real world data, we never know the
exact underlying choice and demand process and thus there is always the
question if the observed performance is due the tested model or just by chance.
In a simulation study, we know the underlying choice and demand process.
So, the estimation accuracy can really be measured, and potential revenue
gains for different optimization models can be assessed. Another advantage
of a simulation study is to test the performance on markets with different
characteristics, e.g., markets with high or low buy-up potential.

8.1 Simulation Setup

This section will explain the structure and steps of the simulation tool and the
optimization models used to compute the booking controls. The simulation
consist of a loop over the following steps:

1. generate demand per choice-set from known parameter,

2. bid price booking control to obtain availability and sales data,

3. unconstrain the sales data to obtain information on choice-set demand.
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The objective is twofold: first, to measure how well the unconstraining method
estimates the underlying demand process, and second, to estimate the poten-
tial revenue gain by implementing a choice-set based RM system.

The optimization models, which compute the bid prices for the booking con-
trol to obtain sales data, are based on demand forecasts on choice-set level.
But the demand forecast is made on the basis of historical demand data and
this demand data is obtained by unconstraining historical sales data. Thus, we
have a knowledge problem: we need sales data as input in the unconstraining,
but to obtain sales data we need some information on the demand. Giving
the optimization models a priori perfect knowledge of the demand process will
adulterate the test results. Applying a very stupid booking control on the
other hand, e.g., offer only one product or even offer nothing, will result in
sales data which does not contain significant information on the specific de-
mand process. Also, current booking controls in practice are already quite
sophisticated. So, to overcome this information problem, we decided to divide
the simulation test into two periods, namely the learning and the testing pe-
riod.

In the learning period, we generate sufficient historical sales to base the fore-
cast of unconstrained choice-set demand on a good foundation. To obtain
sales realizations, we need an initial booking control to constrain the choice-
set demand into sales per products. Within the learning period, we apply the
deterministic linear program (DLP) to obtain the bid prices. The DLP, as
described in Talluri and van Ryzin (2004b), takes the following form

maxx rTx (8.1)

s.t. Ax ≤ c (8.2)

0 ≤ x ≤ E[D], (8.3)

where r denotes the revenue vector, A the resource-product matrix, c the
resource capacity vector, D the demand per product and x represents the op-
timal capacity allocation or booking limits per product. The bid prices are
the dual variables corresponding to constraint (8.2). The DLP does not con-
sider choice behavior of customers, it assumes the demand to be independent
between products. We want to give the model some information on the choice
behavior. Hence, the expected product demand for the DLP is therefore cal-
culated such that 50% of the choice-set demand goes to the product with the
highest preference and the remaining 50% are added to the product demand
of the second preferred product. The DLP has therefore some buy-up knowl-
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edge of the demand. In case the choice-set consists only of one product, the
whole demand is added to this product. Within the learning period we do not
forecast demand. The DLP is solved based on the expected demand informa-
tion, as described above. Sales and availability data is generated and further
unconstrained to obtain estimates of the choice-set demand curves.

In the test period, we forecast choice-set demand based on historic data. The
forecasted demand information is used in the optimization models to compute
the bid prices for the booking control. So, the test period represents a practical
situation, when we have historic sales data on hand. The question is how well
a choice-set based RM system performs. The iterations in the test period
consist of the following steps:

1. forecast the demand curve for each choice set,

2. compute bid prices based on the forecast,

3. sales realizations are generated based on the bid price acceptance control,

4. choice-set demand curves are estimated from sales and availability data.

The forecasting is performed as described in Chapter 6. Although, the input
is not a booking curve of reservation data, but booking horizons of demand
estimates of independent choice-sets. Hence, the methodology is essentially the
same, we only apply it separately for each choice-set. All previous estimated
demand curves are combined to a data matrix, such that each row corresponds
to a booking horizon, compare with Chapter 6. Having this matrix, with the
dimension of observed booking horizons times days in the booking horizon, we
can perform a dimension reduction by singular value decomposition (SVD).
SVD provides us with a set of base vectors and a time series of weights, such
that the linear combination of the base vectors with the corresponding weights
gives a reduced dimensional approximation of the demand matrix. We will
work with K = 1, i.e., only one base vector. The actual forecast is obtained by
applying Holt-Winters method on the weights time series. The forecast of the
entire future booking horizon is then obtained by multiplying the forecasted
weights with the base vector. We do not perform forecast updating within not
completed booking horizons for several reasons. First, the impact of forecast
updating is studied in Chapter 6. Second, the simulated demand quantities
within different parts of the booking horizon are uncorrelated in the simulation.
And third, the focus of the simulation test is on the unconstraining accuracy
and the potential revenue gains of the choice-based optimization models and
not on an explicit forecasting method.
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Figure 8.1 illustrates the two simulation parts and the components of the
complete simulation process.

Learning period:

Testing period:

simulated
choice−set

demand

simulated
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demand

sales
realizations

sales
realizations
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Figure 8.1. Simulation process diagram.

Our proposed optimization model is the choice-set based time dependent bid
price model (CTDB), as introduced in Chapter 7. The performance of the
CTDB is compared by the mean generated revenue improvements over the
DLP and the choice based extension of the DLP (CDLP), which is described
in van Ryzin and Liu (2008). Let N denote the set of all products, thus we
can denote a set of offered products by S ⊆ N . Instead of computing booking
limits per products, as in the DLP case, the CDLP aims to compute availability
times t(S) per considered offer-set S ⊆ N . The customer arrival rate per time
stage is denoted by λ. Each offer-set S is associated with a probability vector
P (S) ∈ [0, 1]|N |, referring to the sales probabilities per product under a specific
offer-set S. Based on this we can compute the expected capacity consumptions
of offer-set S by

Q(S) = AP (S), (8.4)

and the expected revenue generated by set S

R(S) =
∑

j∈N

rjPj(S). (8.5)
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The CDLP takes now the following form

maxt
∑

S⊆N

λR(S)t(S) (8.6)

s.t.
∑

S⊆N

λQ(S)t(S) ≤ c (8.7)

∑

S⊆N

t(S) ≤ T (8.8)

t(S) ≥ 0 ∀S ⊆ N . (8.9)

The solution t̂(S) provides us with the optimal time fraction set S should
be offered. The bid price, i.e., the marginal price of capacity, is obtained by
solving the dual problem

minπ,σ πT c+ Tσ (8.10)

s.t. λπTQ(S) + σ ≥ λR(S) ∀S ⊆ N (8.11)

π, σ ≥ 0, (8.12)

with π being the dual variable referring to the capacity constraint (8.7) and σ
refers respectively to the time constraint (8.8). So π is used as the bid price.
The number of possible offer-sets growth exponentially in the number of prod-
ucts. Talluri and van Ryzin (2004a) and van Ryzin and Liu (2008) propose to
consider only efficient sets in the optimization model. Offer-sets are efficient,
if there exist no mixture of other sets which produces a strictly greater revenue
and consumes in expectation less or equal capacity. The number of efficient
sets is considerably smaller than the number of all possible sets. Further, van
Ryzin and Liu (2008) propose a column generation approach in order to make
their model applicable for practical problem settings. Remember that choice-
sets are represented by a binary matrix CS ∈ {0, 1}C×(N+1), the entries of the
matrix are interpreted as follows

CSi,j =

{

1 , choice-set i contains product j

0 , choice-set i does not contain product j
,

with the (N +1)th product denoting the non-purchase decision. Offer-sets are
similar defined by a binary matrix O ∈ {0, 1}(N+1)×N , meaning

Oi,j =

{

1 , offer-set i contains product j

0 , offer-set i does not contain product j
.
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Since we implement a bid price based sales control, we only have to consider
all bid price feasible sets to offer. Remember that a bid price control means
that prices are associated with resources and products are available if their
price exceeds the sum of bid prices over resources utilized by this product.
So the set of all bid price feasible offer-sets ranges from the full offer-set, all
products are available, to the empty offer-set, no products are available. Such
bid price feasible sets can in many case be straightforward constructed and
their number is considerably small. For example, in a single resource case
with N products ordered by increasing prices, we have N+1 bid price feasible
offer-sets. The matrix O takes then the following form

O =












1 1 1 · · · 1
0 1 1 · · · 1
0 0 1 · · · 1
...

. . .
. . .

...
0 · · · 0 1
0 · · · 0












.

The rows of O correspond to the offer-sets, starting with the set of offering all
products and then closing the cheapest available in the next offer set. Until
we end up with the empty offer-set, i.e., no products are offered.

8.2 Test Cases

The simulation test is performed on a general problem setting with one re-
source, e.g., one hotel or one flight, and five products/ classes. The prices of
the products (Prod1, . . . , Prod5) are fixed for all test cases and shown in Ta-
ble 8.1. We further consider a three month booking horizon, i.e., 84 booking

Prod1 Prod2 Prod3 Prod4 Prod5

25 30 55 80 110

Table 8.1. Prices of products.

days. The horizon is split into 12 time stages, representing the booking weeks.
Booking week 1 corresponds to the last booking week, i.e., the week including
the usage time of the product. Respectively, booking week 12 represents the
first booking week, i.e., three month prior usage of the product. The booking
intensity is not constant over all weekdays and all booking weeks, the patterns
are shown in Figure 8.2. The usage day of our products is a Monday, e.g.,



8.2. Test Cases 149

Tue Wed Thu Fri Sat Sun Mon
0

0.05

0.1

0.15

0.2

0.25
Booking Pattern

 

 

booking week 1
booking week 2−4
booking week 5−12

Figure 8.2. Final estimated demand curves per choice-set.

arrival at the hotel, and thus the booking week goes from Tuesday till Mon-
day. Up on this basic problem structure, we test three different test cases.
Each test case represents a certain market with different buy-up possibilities
and different demand groups. Therefore, the choice-sets and their parameters
are specific per test cases. The demand rates for choice-set with low priced
products have always a flatter slope than choice-sets covering the higher priced
segment. This reflects the observed behavior in practice that request for higher
priced products occur closer to the usage time of the product, e.g., arrival at
the hotel or departure of the airplane. Capacity is set to 170 in all test cases
and the resulting load factor is always around 1.2.

Test case 1:
The first test case represents a market made up of five choice-sets with mod-
erate buy-up possibilities. All choice-sets, except the first choice-set (CS1),
cover two products and have thus one buy-up possibility. The choice-sets and
the corresponding demand rate parameter are shown in Table 8.2. The un-

Prod1 Prod2 Prod3 Prod4 Prod5 α β

CS1 1 0 0 0 0 -0.05 6
CS2 1 1 0 0 0 -0.05 4
CS3 0 1 1 0 0 -0.10 10
CS4 0 0 1 1 0 -0.20 8
CS5 0 0 0 1 1 -0.30 6

Table 8.2. Test case 1: choice-sets definition and demand rate parameter.
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constraining algorithm has full information on the choice-set definitions.

Test case 2:
In the second test case, we model a market with no buy-up possibilities, the
choice-sets are shown in Table 8.3. The unconstraining algorithm has also in-
formation that there may be customers with buy-up possibilities in the market,
choice-sets six and seven. We are interested to see if the estimation algorithm
provides a good approximation of the real market characteristics, or if it puts
weight on the dummy choice-set covering multiple products. The dummy
choice-sets, i.e., the ones with buy-up, have almost zero demand rates.

Prod1 Prod2 Prod3 Prod4 Prod5 α β

CS1 1 0 0 0 0 -0.10 12
CS2 0 1 0 0 0 -0.15 10
CS3 0 0 1 0 0 -0.20 9
CS4 0 0 0 1 0 -0.30 8
CS5 0 0 0 0 1 -0.40 7
CS6 1 1 1 0 0 -0.05 0.01
CS7 1 1 1 1 1 -0.05 0.01

Table 8.3. Test case 2: choice-sets definition and demand rate parameter.

Test case 3:
In the third test case, we test the counter part to test case 2. Namely, we model
a market with buy-up possibilities and add dummy choice-sets covering only
single products. We want to test if the estimation algorithm approximates
the characteristics right and puts no weight in the dummy choice-sets. The
choice-sets are shown in Table 8.4.

Prod1 Prod2 Prod3 Prod4 Prod5 α β

CS1 1 1 0 0 0 -0.10 15
CS2 1 1 1 0 0 -0.15 13
CS3 0 1 1 1 0 -0.22 6
CS4 0 0 0 1 1 -0.30 5
CS5 0 0 1 0 0 -0.05 0.01
CS6 0 0 0 1 0 -0.05 0.01
CS7 0 0 0 0 1 -0.05 0.01

Table 8.4. Test case 3: choice-sets definition and demand rate parameter.
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8.3 Numerical Results

The simulation tool is implemented in MATLAB R2011b and the optimiza-
tion models are solved with Ilog CPLEX version 12.2. The computation is
performed on a duo core (2.3 GHz) Windows machine with 3 GB of memory.
We compute the bid prices at the beginning of each booking week and they are
not updated during the week, i.e., the optimization models are solved 12 times
per iteration. The CDLP and the CTDB are tested on the same demand real-
ization, to ensure a fair comparison. The unconstraining and the forecasting
of the choice-set demand is performed separately for both optimization mod-
els, since both models provide different bid prices and hence result in different
availability and sales data. So the parameter estimation results of the uncon-
straining algorithm are given respectively for both optimization models. The
DLP revenue results are obtained by averaging the generated revenue over the
learning period. Further, the number of iterations in the learning and testing
period is set to 100 each. The choice-set demand parameter are estimated by
the algorithm proposed in Chapter 4 and the stopping criteria is set to max-
imum 100 iterations or a simultaneous satisfaction of the following tolerance
bound on parameter changes: ∆α-tolerance 0.001, ∆β-tolerance 0.01 and a ∆
log-likelihood-tolerance of 0.1.

8.3.1 Results for test case 1

The demand estimation algorithm took in average 29 iterations and stopped
after 11 seconds. The parameter estimates at each iteration in the test period
are shown in Figures 8.3. We observe that the parameters are converging
in all cases. Generally, the beta parameter seem to converge faster than the
alpha parameter, but note that the scale of the betas is larger than for the
alphas. For both optimization models, we observe that the parameters are not
always converging to the real parameter. But even in cases when the estimated
parameter values are generally not equal to the real demand parameter, the
actual demand curve can be quite well approximated, as in the case of CS3.
This observation coincides with our findings in Chapter 2 and Haensel and
Koole (2011b) that multiple parameter can result in very similar demand
curve. The last forecasted demand rates, i.e., forecasted at the last iteration in
the testing period, are shown in Figure 8.4. The last forecasted curve contain
all the so far gained information on the choice-set demand and are therefore a
good measure for the learned demand behavior. The final demand curves have
the same behavior for both optimization models, but are not equal. Especially
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Figure 8.3. Test case 1: The averaged α and β estimates per choice-set and iteration.
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Figure 8.4. Test case 1: Final forecasted demand curves per choice-set.

for choice-sets CS4 and CS5 provide the estimated curves based on the CTDB
data a better approximation. Comparing the demand curve approximations,
we find that choice-sets CS3-CS5 are reasonably well approximated. CS2
is slightly overestimated towards the end of the booking horizon and CS1 is
dramatically underestimated except for the last time stages. This is partly due
to a lack of informative sales data. Table 8.5 shown the choice-set satisfaction
ratios, i.e., the ratio between accepted and total customers per choice set. We

CS1 CS2 CS3 CS4 CS5

DLP 0.61 0.89 0.92 0.91 0.88
CDLP 0.72 0.73 0.92 0.89 0.88
CTDB 0.29 0.28 1.00 0.99 1.00

Table 8.5. Test case 1: Choice-set satisfaction.

find that customer requests coming from CS1 and CS2, i.e., the lower segments,
are more often rejected and are therefore more often unobserved. Whereas,
customers of choice-sets CS3-CS5 are rarely rejected and the sales data is more
informative about them. Both optimization models focus only on maximizing
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the expected revenue and do not consider a learning aspect. The combination
of both is commonly known in Dynamic Pricing problems and referred to the
struggle between exploration and exploitation. Our models, and most other
network RM optimization approaches, only focus on the maximum revenue
exploitation and ignore the demand exploration aspect. Let us now focus on
the revenue generating performance of the optimization models. The mean
obtained revenues and the percentage gains of the choice-based models over
the initial DLP are shown in Table 8.6. The CDLP improves the DLP mean

DLP CDLP CTDB

Mean revenue 6454 6694 6909
% gain over DLP - 3.7 7.0
Capacity utilization 1 0.99 0.84

Table 8.6. Test case 1: Revenue performance of optimization models.

revenue by 3.7% and the CTDB even improves the mean DLP revenue by 7.0%.
This shows that the revenue can be significantly improved by incorporating
knowledge of the customers’ choice behavior into the optimization model. A
histogram of the generated revenues for the different optimization models is
shown in Figure 8.5. The variance on the obtained revenue from the CTDB is
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Figure 8.5. Test case 1: Histogram of generated revenues.

increased. But not in form of additional low revenue results, more in form of
new realization with very high revenues. The mean capacity utilization, also
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given in Table 8.6, shows very different values for the CTDB and the other two
models. The CTDB generates a significant lower capacity utilization, which is
due to the advanced bid-prices. The CTDB knows that the bid-prices are not
updated during a time stage, whereas the DLP and the CDLP only provide
‘optimal’ bid-prices for the current system state and do not consider that bid-
prices are not updated within time stages. So the CTDB does a very good
job with respect to the revenue maximization objective. It focuses on the
customer segments at the higher price classes and rejects almost none of these
customers. Companies do not want to reject customers interested in high
priced product and since we usually have scarce capacity (load factor greater
than one), the booking control should reject customers targeting the lower
price classes more frequently.

8.3.2 Results for test case 2

For the second test case, a market with no buy-up possibilities, we observe in
average that the unconstraining algorithm took 55 iterations and finished in 26
seconds. The last forecasted demand rates of the real contributing choice-sets
are shown in Figure 8.6. CS1 is again underestimated, similar to the first test
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Figure 8.6. Test case 2: Final forecasted demand curves of real choice-sets.
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case. The other four choice-sets, CS2 to CS5, are very close approximated by
the unconstraining algorithm and the sales data based on both optimization
models. The sales data from the CTDB produces slightly better approximation
results for the choice-set CS4 and CS5. The final forecasted demand functions
for the dummy choice-sets CS6 and CS7 are presented in Figure 8.7. Both
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Figure 8.7. Test case 2: Final forecasted demand curves of dummy choice-sets.

choice-sets are estimated with small demand rates, but the estimates based
on the CDLP data are significant larger than the ones based on CTDB sales
data. Since the real contributing choice-sets are only consisting of one price,
we expect that there is no gain in using a choice based optimization model,
contrary to a market with buy-up, as in test case 1. This is precisely what we
observe in the simulation test. The revenue results are shown in Table 8.7 and
the histogram of generated revenues is displayed in Figure 8.8. We even find

DLP CDLP CTDB

Mean revenue 7726 7594 7844
% gain over DLP - -1.7 1.5
Capacity utilization 0.997 0.998 0.947

Table 8.7. Test case 2: Revenue performance of optimization models.

that the CDLP generates lower revenue results than the DLP. This is probably
caused by the overestimation of the dummy choice sets, which provides a wrong
estimate of the demand in the market. The CTDB can increase the mean
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revenue by 1.5%. This revenue increase is due to the advanced time dependent
bid price computation. Again, we observe that the capacity utilization with
the CTDB is lowest for all three optimization model, which means that the
CTDB is again most restrictive in the customer acceptance.
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Figure 8.8. Test case 2: Histogram of generated revenues.

8.3.3 Results for test case 3

In the final case, we tested a market with significant buy-up and we added
three dummy choice-sets covering only single products. The unconstraining
algorithm took in average 52 iterations and 26 seconds. The last forecasted
demand curves for the contributing choice-sets, i.e., the buy-up choice-sets
CS1-CS4, are displayed in Figure 8.9. CS2 and CS3 are well approximated with
the CDLP sales data. The estimation with the CTDB data provides only for
the first and second choice-set a very close approximation. The final forecasted
curves for the dummy choice-sets are displayed in Figure 8.10. Choice-sets CS5
and CS7 get no significant demand, they are at maximum approximated with
0.1. But CS6 is approximated with a significant demand rate. Comparing the
results of CS4 and CS6, we find that the amount of underestimation of CS4 is
almost identical with the demand estimated for CS6. Both choice-sets contain
the forth product and the unconstraining algorithm wrongly accounts CS4
customers buying Prod4 to the dummy choice-set CS6. The obtained revenue
results are shown in Table 8.8. With such a buy-up potential in the market,
we expect the choice based optimization models to outperform the initial DLP.
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Figure 8.9. Test case 3: Final forecasted demand curves of real choice-sets.
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Figure 8.10. Test case 3: Final forecasted demand curves of dummy choice-sets.



8.4. Conclusion 159

DLP CDLP CTDB

Mean revenue 5060 5526 6396
% gain over DLP - 9.2 26.4
Capacity utilization 1.0 0.99 0.93

Table 8.8. Test case 3: Revenue performance of optimization models.

The CDLP improves the DLP results already by 9.2%, but the CTDB even
improves the mean DLP revenue by 26.4%. The revenue histogram is shown
in Figure 8.11. The CTDB worst case revenue is almost at the same level as
best case DLP revenue results.

4.500 5.000 5.500 6.000 6.500 7.000
0

10

20

30

40

50

60
Histogram of Generated Revenues

 

 

DLP
CDLP
CTDB

Figure 8.11. Test case 3: Histogram of generated revenues.

8.4 Conclusion

In this chapter, we tested the choice-set demand model in a combined sim-
ulation analysis of all three aspects in RM: unconstraining, forecasting and
optimization. Let us start with the most relevant results for decision makers,
the obtained revenues. The CTDB is the best revenue generating model in
all three test cases. The CDLP model generates in test case one and three
improved results over the pure DLP, but generates a slightly lower revenue in
the second test case. Our general conclusion is that an application of a choice-
based optimization model with consideration of existing buy-up possibilities
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in the market results in large revenue improvements. The CTDB model gener-
ates on top of this choice consideration, a reasonable extra amount of revenue
by using time dependent bid prices.
Coming to the choice-set demand estimation results, we find that the general
demand pattern is overall well approximated. Even in cases with misspecified
markets, i.e., by providing non existent dummy choice-set to the unconstrain-
ing algorithm, we observe that the dummy choice-sets do receive only very
small demand rates. The unconstraining algorithm also converges relatively
fast and is therefore applicable for practical problems. We find that the esti-
mation results are dependent on the information contained in the sales data.
Both optimization models compute different bid-prices, resulting in different
sales realizations. In general, the demand rate approximations are better for
choice-set which are more often accepted, and for which the sales data con-
tains significant relevant information. If certain segments are very frequently
rejected and are therefore often non-observable in the sales data, we can not
hope to obtain very close approximations of the real demand curves. But this
shortcoming is shared with any other estimation method, since an estimation
method in always bounded by the relevant information contained in the un-
derlying data. Optimization models are usually only aiming to maximize the
obtainable revenue without any focus on the demand learning aspect. This is
especially true for the third test case, where the CTDB improves the CDLP
mean revenue by 16%. But the demand estimates in this case are slightly
better for the CDLP sales data. Therefore, future research in the network
RM optimization is needed to combine the trade-offs between exploration and
exploitation of the demand in the market.



Chapter 9

Summary and Conclusion

The ambition of this thesis and the underlying research was to provide a
practical feasible approach to estimate customer demand with information on
the choice preferences, in order to understand the customer’s decision pro-
cess under offered alternatives. Beyond that, we aimed to develop and extend
the major aspects of a RM system to use such advanced information on the
customer demand to maximize the overall revenue or profit. Therefore, this
thesis contributes mainly to the methodology of the revenue management ar-
eas demand modeling, forecasting and optimization; besides it contains also
contributions to the general and theoretic body of RM.

Our proposed choice-set demand approach provides an intuitive and effective
way to model the customer’s choice behavior and preferences. The demand
rate curves, which closely approximate the actual observed increasing demand
characteristics, allow a straightforward demand estimation in non-observed
periods. The proposed unconstraining algorithms require only data that is al-
ready practical available at companies, namely historical sales and offer data
at some aggregated level. The unconstraining test on actual airline transac-
tion data shows close approximations of the observed sales realizations and
is therefore very promising. In the choice model comparison test on a hotel
market, we find that the choice-set based model produces very good predic-
tion results. After establishing and testing the demand unconstraining, we
focused on the forecasting aspect. Usually in RM settings we have very long
booking horizons and a common practical problem is the question of updat-
ing the forecast when new information becomes available, e.g., uncertainty
becomes revealed by observed sales realizations. We propose a dynamic pro-
cedure for booking horizon forecasting, which is based on a forecast dimension
reduction and an application of the penalized least squares method in the up-
dating step. The test results on real hotel reservation data show a significant
increase in forecast accuracy. To complete the considered revenue manage-
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ment process, we focused lastly on the optimization aspect. In particular, we
propose a new approach to compute time dependent bid prices in a network
RM setting. In our model, we allow for multiple arriving customers per time
stage and assume that bid prices are kept constant per period. These assump-
tions are often more realistic than the usual assumed setting with at most
one customer arrival per time stage and the possibility to adjust bid prices
at each of this tiny periods. The initial proposed deterministic optimization
model is extended to consider stochastic demand information in form of sce-
narios, resulting in stochastic programming formulations. We further extend
the time dependent bid price model to work with choice-set demand input in
order to consider the customer’s choice behavior under offered alternatives.
Finally, we combined all three aspects, i.e., unconstraining, forecasting and
optimization, in a simulation study. The objective is to estimate and test the
effectiveness and potential of incorporating the choice-set demand approach
in a revenue management application. We find that in the presence of ac-
tual buy-up possibilities in the market, the consideration of choice behavior
in the optimization results in large revenue improvements. In addition, the
time dependent bid price model generates considerable extra revenue gains.
The proposed unconstraining algorithm estimates the actual demand curves
per choice-set reasonably well and therefore provides a good approximation of
the underlying demand.

To conclude, the choice-set demand model and its unconstraining, forecasting
and optimization approaches provide a coherent and promising framework to
incorporate the consideration of customer choice behavior into a real world
revenue management applications. All approaches are developed with the fo-
cus on a practical application and require only already available company data.

The proposed approaches are already tailored for practical use. But because
of the general and scientific scope of the thesis, they are naturally not directly
implementable into a complex corporate environment. The models need to be
adjusted to comply with actual application and company specific requirements
and restrictions. Moreover, the revenue management system, with the pricing
and sales control, sits at the heart of the company and is absolutely crucial
for the firm’s success or failure. Therefore, further testing on more realistic
sized and problem specific settings is needed to evaluate the explicit revenue
potential and the actual computational requirements, as well as to identify
and resolve potential risks. Turning to the theoretic side, we find that further
research is needed toward a new perspective on optimization models in network



163

RM. The pure revenue maximization objective must be changed to incorporate
the demand exploration aspect, and possibly also with a concentration on risk
averse solutions instead of the plain expected revenue target.
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Samenvatting

Het doel van dit proefschrift en het achterliggende onderzoek was het ver-
schaffen van een praktisch uitvoerbare manier om klantenvraag te schatten
uit informatie over hun keuzevoorkeuren, om zo beter te begrijpen hoe een
klant een keuze maakt uit verschillende beschikbare alternatieven. Daarnaast
hebben we de belangrijkste delen van een RM systeem uitgebreid, zodat zulke
geavanceerde informatie over klantenvraag gebruikt kan worden om de totale
omzet of winst te maximaliseren. Derhalve draagt dit proefschrift vooral bij
aan de methodologie van de revenue management (RM) gebieden: klanten-
vraag modelleering, voorspelling en optimalisatie; daarnaast bevat het ook
bijdragen aan de algemene en theoretische kant van RM.

De choice-set-aanpak die we voorstellen biedt een intüıtieve en effectieve ma-
nier om het keuzegedrag en de voorkeuren van klanten te modelleren. De
vraagcurven, die de werkelijk geobserveerde eigenschappen van de vraag goed
benaderen, kunnen rechtstreeks gebruikt worden om de vraag te schatten in
niet-geobserveerde periodes. De voorgestelde unconstraining-algoritmes heb-
ben alleen gegevens nodig die in de praktijk al beschikbaar zijn bij bedrijven,
namelijk historische gegevens over verkoop en aanbod op een bepaald geag-
gregeerd niveau. De unconstraining-test, met echte transactiegegevens van
een vliegtuigmaatschappij, laat goede benaderingen zien van de geobserveerde
verkoop, en is dan ook veelbelovend. Het choice-set-model produceert ook
erg goede voorspellingsresultaten in een vergelijkingstest van verschillenden
keuzemodellen, getest aan echte hotel reserveringen. Na het vaststellen en
het testen van de vraag-unconstraining, hebben we ons gericht op het ma-
ken van voorspellingen. In RM is de boekingshorizon doorgaans erg lang, en
een veelvoorkomend probleem uit de praktijk is de vraag hoe de voorspelling
bijgesteld moet worden als nieuwe informatie beschikbaar komt, met andere
woorden, als onzekere factoren bekend worden door geobserveerde, gereali-
seerde verkooptransacties. We stellen een dynamische procedure voor om de
boekingshorizon te voorspellen, gebaseerd op dimensiereductie en een toepas-
sing van de penalized least squares methode bij de update stap. Testresulta-
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ten op echte hotelreserveringsgegevens tonen een significante toename in de
nauwkeurigheid van de voorspellingen. Tenslotte hebben we ons gericht op
het optimalisatie-aspect, om zo het RM proces geheel te bestuderen. In het
bijzonder stellen we een nieuwe benadering voor om tijdsafhankelijke biedprij-
zen in een RM netwerk te berekenen. In ons model mogen meerdere klanten
per tijdsperiode aankomen, en we nemen aan dat de bidprices gedurende een
periode constant worden gehouden. Deze aannames zijn doorgaans realisti-
scher dan de gebruikelijke aannames dat hoogstens een klant per tijdsperiode
aankomt, en dat biedprijzen in elke kleine periode kunnen worden aangepast.
Het deterministische optimalisatiemodel dat we in eerste instantie voorstellen,
wordt uitgebreid om stochastische vraaginformatie in de vorm van scenarios
in beschouwing te nemen, wat resulteert in stochastic programming formu-
leringen. We breiden verder het tijdsafhankelijke biedprijsmodel uit zodat
het kan werken met invoer van de choice-set vraag, om zo het keuzegedrag
van klanten onder verschillende alternatieven mee te nemen. Tot slot hebben
we alle drie aspecten, namelijk unconstraining, voorspellen en optimaliseren,
gecombineerd in een simulatiestudie. Het doel is om de effectiviteit en het
potentieel van het integreren van de choice-set-aanpak in een RM toepassing,
te schatten en te testen. Het blijkt dat, als buy-up-mogelijkheden in de markt
aanwezig zijn, het bestuderen van keuzegedrag in de optimalisatie leidt tot
grote omzetstijgingen. Daarnaast genereert het tijdsafhankelijke biedprijsmo-
del aanzienlijk meer omzet. Het voorgestelde unconstraining-algoritme schat
de daadwerkelijke vraagkrommen voor iedere keuzeverzameling redelijk goed,
en biedt zo een goede benadering van de onderliggende vraag.

Samenvattend, het choice-set-model en de bijbehorende aanpak van uncon-
straining, voorspellen en optimaliseren, biedt een samenhangend en veelbe-
lovend raamwerk om keuzegedrag van klanten in echte RM toepassingen te
integreren. Alle methoden zijn ontwikkeld met de focus op een praktische
toepassing en hebben alleen bedrijfsgegevens nodig die al beschikbaar zijn.

De voorgestelde methoden zijn al op maat gemaakt voor gebruik in de praktijk.
Vanwege de algemene en wetenschappelijke insteek van dit proefschrift, zijn
deze uiteraard niet direct implementeerbaar in een complexe, zakelijke omge-
ving. De modellen moeten nog aangepast worden om te voldoen aan de wer-
kelijke toepassing en bedrijfsspecifieke eisen en beperkingen. Bovendien ligt
het RM systeem, met de mogelijkheid om prijzen en verkopen te bëınvloeden,
in het hart van het bedrijf, en is het absoluut cruciaal voor het succes of fa-
len van de onderneming. Daarom zijn testen op problemen van realistische
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grootte nodig om expliciet een beeld te krijgen van het omzetpotentieel en
de benodigde rekenkundige eisen, en om mogelijke risicos te identificeren en
op te lossen. Aan de theoretische kant vinden we dat meer onderzoek no-
dig is naar een nieuw perspectief op optimalisatiemodellen in netwerk RM.
Het doel van het puur de omzet maximaliseren moet veranderd worden, om
het vraag-exploratie aspect mee te nemen, en mogelijk met meer aandacht op
risicomijdende oplossingen in plaats van de verwachte omzet.
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